| 研究生: |
陳映竹 Ying-Chu Chen |
|---|---|
| 論文名稱: |
銻化鈷薄膜熱電熱時效之研究 |
| 指導教授: | 吳子嘉 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 銻化鈷 、薄膜熱電 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源與環保議題興起,熱電材料近年來備受矚目。科技的進步,使得人們開始追求微型化且具有高輸出功率的熱電裝置。本實驗選擇對環境無害的CoSb3作為主要探討的中溫熱電材料,藉由射頻磁控濺鍍製備厚度300 nm的CoSb3熱電薄膜於SiO2/Si上,測試試片分別為單層CoSb3與Cu/Ti/CoSb3,而Cu/Ti/CoSb3中的Ti作為Cu與CoSb3之間的接著層。對單層CoSb3熱電薄膜進行不同的熱時效溫度於不同時間下之熱時效分析,以TGA、SEM、EDS以及GIXRD分別進行薄膜的熱重損失、元素組成分析以及相鑑定,藉由單層CoSb3所得之熱時效結果再進一步以Cu/Ti/CoSb3進行熱時效測試。經熱重損失分析結果得知,本實驗製備的CoSb3約於480 oC時會發生Sb昇華之現象,因此本實驗將以低於480 oC進行熱時效測試。經400 oC時效48小時之單層CoSb3熱電薄膜,其SEM影像觀察到CoSb3會發生晶粒成長,使得薄膜中生成孔洞且令薄膜不連續;於450 oC時效120小時後,由於Sb昇華導致CoSb3完全轉變為CoSb2,並且有部分CoSb2轉變成CoSb,因此適合此CoSb3熱電薄膜的環境溫度需低於400 oC,故選擇300 oC作為熱時效溫度,並對Cu/Ti/CoSb3進行不同時間之熱時效測試,觀察Cu/Ti/CoSb3中金屬電極的Cu原子於CoSb3熱電薄膜表面擴散情形,可推得300 oC時,Cu於CoSb3的擴散係數約為{10}^{-7}\ ({cm}^2/s),並且量測熱時效前後Cu/Ti/CoSb3之接觸電阻,可知Ti雖可作為Cu與CoSb3的接著層,但隨著熱時效時間拉長,Cu/Ti/CoSb3的接觸電阻率會隨之增大,因此,需選擇另一有效接著層用以接著Cu與CoSb3。
Thermoelectric materials have attracted great attention in recent years due to sharp increase of energy consumption and environmental protection purpose. Thermoelectric (TE) devices which have shrinking dimensions and high output efficiencies are developed with the advance of materials science and technology. CoSb3 thin film, the eco-friendly medium-temperature TE material, is chosen as the material in this study. CoSb3 thin films with a thickness of 300 nm were deposited on SiO2/Si substrate by radio-frequency (RF) magnetron sputtering method. There were two types of testing samples which were single CoSb3 layer and Cu/Ti/CoSb3 respectively, and Ti acted as the adhesion layer of Cu and CoSb3. The investigation focused on thermal aging results of single CoSb3 layer at different temperatures and various aging durations of time. TGA, SEM-EDS, and GIXRD were used to investigate the thermal weight loss, elemental composition and phase characterization of CoSb3thin films, respectively; furthermore, the aging conditions of Cu/Ti/CoSb3 were determined by the results of single CoSb3 layer after aging tests. The result of TGA showed that there was a weight loss at 480 oC due to sublimation of Sb. SEM observation indicated that grain growth of the CoSb3 film occurred at 400 oC after aging for 48 hours, and voids appeared on the thin film and resulted in discontinuity of thin film. Besides, because of Sb sublimation, CoSb3 phase totally transformed to CoSb2, and partial CoSb2 became CoSb at 450 oC for 120 hours. The proper operating temperature of CoSb3 thin films should be less than 400 oC; therefore, the module of Cu/Ti/CoSb3 was aged at 300 oC for different durations of time to discuss the Cu diffusion on CoSb3 surface. The diffusivity of Cu in CoSb3 at 300 oC is about {10}^{-7}(cm^2/s). The contact resistivities of unaged and aged Cu/Ti/CoSb3 were measured. The contact resistivities of Cu/Ti/CoSb3 increased with prolonging aging durations. Consequently, another alternative adhesion layer should be chosen between Cu and CoSb3.
[1] 中華民國行政院經濟部能源局., 統計資料-發電結構. https://www.moeaboe.gov.tw/wesnq/Views/B01/wFrmB0102.aspx.
[2] IEA., World Energy Outlook 2019, 2019. https://www.iea.org/reports/world-energy-outlook-2019/electricity#abstract.
[3] X. Liu, Y.D. Deng, Z. Li, C.Q. Su, Performance analysis of a waste heat recovery thermoelectric generation system for automotive application, Energy Conversion and Management 90 (2015) 121-127.
[4] V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov, A.T. Burkov, Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry, Journal of Materials Chemistry A 5(7) (2017) 3541-3546.
[5] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Materials 7(2) (2008) 105-114.
[6] M. Rull-Bravo, A. Moure, J.F. Fernández, M. Martín-González, Skutterudites as thermoelectric materials: revisited, RSC Advances 5(52) (2015) 41653-41667.
[7] J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angew Chem Int Ed Engl 48(46) (2009) 8616-39.
[8] T. Caillat, J.P. Fleurial, A. Borshchevsky, Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3, Journal of Crystal Growth 166(1) (1996) 722-726.
[9] M.G. Holland, Phonon Scattering in Semiconductors From Thermal Conductivity Studies, Physical Review 134(2A) (1964) A471-A480.
[10] B. Fu, G. Tang, Y. Li, Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures, Phys Chem Chem Phys 19(42) (2017) 28517-28526.
[11] Y. Liu, X. Li, Q. Zhang, C. Chen, J. Li, L. Zhang, D. Yu, Y. Tian, B. Xu, High pressure synthesis of p-type Fe-substituted CoSb3 skutterudites, Journal of Materials Science: Materials in Electronics 27 (2016) 6433-6437.
[12] K.-H. Park, W.-S. Seo, D.-K. Shin, I.-H. Kim, Thermoelectric properties of Yb-filled CoSb3 skutterudites, Journal of the Korean Physical Society 65(4) (2014) 491-495.
[13] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, Journal of Alloys and Compounds 477(1-2) (2009) 425-431.
[14] W.-a. Chen, S.-w. Chen, S.-m. Tseng, H.-w. Hsiao, Y.-y. Chen, G.J. Snyder, Y. Tang, Interfacial reactions in Ni/CoSb3 couples at 450 °C, Journal of Alloys and Compounds 632 (2015) 500-504.
[15] C.C. Yu, H.J. Wu, P.Y. Deng, M.T. Agne, G.J. Snyder, J.P. Chu, Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules, Sci Rep 7 (2017) 45177.
[16] P. Fan, Y. Zhang, Z.-h. Zheng, W.-f. Fan, J.-t. Luo, G.-x. Liang, D.-p. Zhang, Thermoelectric Properties of Cobalt Antimony Thin Films Deposited on Flexible Substrates by Radio Frequency Magnetron Sputtering, Journal of Electronic Materials 44(2) (2014) 630-635.
[17] A. Ahmed, S. Han, Thermoelectric properties of cobalt–antimonide thin films prepared by radio frequency co-sputtering, Thin Solid Films 587 (2015) 150-155.
[18] Z.-h. Zheng, P. Fan, Y. Zhang, J.-t. Luo, Y. Huang, G.-x. Liang, High-performance In filled CoSb3 nano thin films fabricated by multi-step co-sputtering method, Journal of Alloys and Compounds 639 (2015) 74-78.
[19] M.V. Daniel, M. Friedemann, J. Franke, M. Albrecht, Thermal stability of thermoelectric CoSb3 skutterudite thin films, Thin Solid Films 589 (2015) 203-208.
[20] M.V. Daniel, C. Brombacher, G. Beddies, N. Jöhrmann, M. Hietschold, D.C. Johnson, Z. Aabdin, N. Peranio, O. Eibl, M. Albrecht, Structural properties of thermoelectric CoSb3 skutterudite thin films prepared by molecular beam deposition, Journal of Alloys and Compounds 624 (2015) 216-225.
[21] S. Yadav, B.S. Yadav, S. Chaudhary, D.K. Pandya, Deposition potential controlled structural and thermoelectric behavior of electrodeposited CoSb3 thin films, RSC Advances 7(33) (2017) 20336-20344.
[22] K. Wasa, M. Kitabatake, H. Adachi, 2 - Thin Film Processes, in: K. Wasa, M. Kitabatake, H. Adachi (Eds.), Thin Film Materials Technology, William Andrew Publishing, Norwich, NY, 2004, pp. 17-69.
[23] A.O. Adeyeye, G. Shimon, Chapter 1 - Growth and Characterization of Magnetic Thin Film and Nanostructures, in: R.E. Camley, Z. Celinski, R.L. Stamps (Eds.), Handbook of Surface Science, North-Holland2015, pp. 1-41.
[24] H. Frey, Cathode Sputtering, in: H. Frey, H.R. Khan (Eds.), Handbook of Thin-Film Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 133-165.
[25] M.T. Hardy, D.F. Storm, D.S. Katzer, B.P. Downey, N. Nepal, D.J. Meyer, Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors, J Vis Exp (117) (2016).
[26] M.M. Bellah, S.M. Christensen, S.M. Iqbal, Nanostructures for Medical Diagnostics, Journal of Nanomaterials 2012 (2012) 1-21.
[27] K.H. Bae, S.-M. Choi, K.-H. Kim, Choi, S. Hyoung, W.-S. Seo, I.-H. Kim, S. Lee, H.J. Hwang, Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces, Journal of Electronic Materials 44(6) (2015) 2124-2131.
[28] M. Shayesteh, C.L.M. Daunt, D. O'Connell, V. Djara, M. White, B. Long, R. Duffy, N-type doped germanium contact resistance extraction and evaluation for advanced devices, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011, pp. 235-238.
[29] F. Giubileo, A. Di Bartolomeo, The role of contact resistance in graphene field-effect devices, Progress in Surface Science 92(3) (2017) 143-175.
[30] A. Ahmed, S. Han, Effect of Sb content on the thermoelectric properties of annealed CoSb 3 thin films deposited via RF co-sputtering, Applied Surface Science 408 (2017) 88-95.
[31] D. Zhao, C. Tian, Y. Liu, C. Zhan, L. Chen, High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test, Journal of Alloys and Compounds 509(6) (2011) 3166-3171.
[32] R.A. Shkarban, Y.S. Peresunko, E.P. Pavlova, S.I. Sidorenko, A. Csik, Y.N. Makogon, Thermally Activated Processes of the Phase Composition and Structure Formation of the Nanoscaled Co–Sb Films, Powder Metallurgy and Metal Ceramics 54(11-12) (2016) 738-745.
[33] M. Project, CoSb3. https://materialsproject.org/materials/mp-1317/.
[34] M. Project, CoSb2. https://materialsproject.org/materials/mp-9835/.
[35] M. Project, CoSb. https://materialsproject.org/materials/mp-2644/.
[36] Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3, Journal of Alloys and Compounds 315(1) (2001) 193-197.
[37] M.V. Daniel, M. Lindorf, M. Albrecht, Thermoelectric properties of skutterudite CoSb3 thin films, Journal of Applied Physics 120(12) (2016).
[38] S. Katsuyama, F. Maezawa, T. Tanaka, Synthesis and thermoelectric properties of sintered skutterudite CoSb3with a bimodal distribution of crystal grains, Journal of Physics: Conference Series 379 (2012).
[39] N. Dong, X. Jia, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, L. Deng, H.A. Ma, HPHT synthesis and thermoelectric properties of CoSb3 and Fe0.6Co3.4Sb12 skutterudites, Journal of Alloys and Compounds 480(2) (2009) 882-884.
[40] Y. Liu, Y. Lin, Z. Shi, C.-W. Nan, Z. Shen, Preparation of Ca3Co4O9 and Improvement of its Thermoelectric Properties by Spark Plasma Sintering, Journal of the American Ceramic Society 88(5) (2005) 1337-1340.
[41] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, High temperature reliability evaluation of CoSb3/electrode thermoelectric joints, Intermetallics 17(3) (2009) 136-141.
[42] K.T. Wojciechowski, R. Zybala, R. Mania, High temperature CoSb3–Cu junctions, Microelectronics Reliability 51(7) (2011) 1198-1202.
[43] R.P. Gupta, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, B.E. Gnade, Low Resistance Ohmic Contacts to Bi[sub 2]Te[sub 3] Using Ni and Co Metallization, Journal of The Electrochemical Society 157(6) (2010).