| 研究生: |
張政彬 Cheng-Pin Chang |
|---|---|
| 論文名稱: |
以數值分析法優化MOCVD高溫反應腔體之二段加熱系統暨實作驗證 Numerical Analysis in Optimization and Experiment verification for two-zone Heating System in a Very-High temperature MOCVD reactor |
| 指導教授: |
利定東
Ting-Tung Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 二段加熱系統 、高溫反應腔體 |
| 外文關鍵詞: | two-zone Heating System, MOCVD |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MOCVD為發光二極體、高頻元件、功率元件等重要電子元件的主要製程設備,其設備機台可以劃分為五大項目、加熱系統、控制系統、進氣系統、廢氣處理系統、真空反應腔體,其中加熱系統提供製程反應中所需要的製程溫度與能量,其溫度均勻度影響薄膜品質甚劇,而溫度均勻度主要來自於發熱源形狀以及間距的設計,有鑑於此,本研究以自身搭建一MOCVD之高溫加熱系統進行研究,且為使承載盤表面溫度分布均勻,加入第二段加熱源,藉由多功率調變提升加熱系統之設計彈性,特以數值軟體針對以下參數進行分析
(1)內環加熱器形狀參數探討
(2)外環加熱器形狀參數探討
(3)二區段加熱器優化分析
(4)二區段加熱器之承載盤表面溫度驗證分析
(5)反射擋板與二區段加熱器
比對數值分析與實驗結果,可進行加熱器電熱功率與二區段加熱器線圈形狀設計,並對承載盤表面溫度分布進行優化,大幅度改盤面溫度分布,承載盤表面溫度誤差百分比僅1%以內且晶圓區之溫度均勻性可達6.73℃。而反射擋板與二區段加熱器之組合可提升加熱器電熱功率使用效率,並且增加承載盤使用率。
A semiconductor equipment usually can be divided into five sub-systems, (a) heating system, (b) exhausting system, (c) infecting system, (d)control system and (e) vacuum chamber. To deposit epitaxy thin film using metal organic chemical vapor deposition (MOCVD), the uniformity is a key process indicator and is determined by the distribution of susceptor temperature. Therefore, the research focuses on the heating system for a MOCVD vacuum reactor. The geometry of the heater determines the uniformity of the surface temperature. By setting design parameters in a vacuum reactor, the results assist us to receive the distribution of surface temperature. The two-zone heating system increases the flexibility of heater design and makes the temperature distribution of susceptor more uniform with the multi-power modulation. The inner-heater design, outer-heater design, and, optimization of heater, experiment verification and reflector set-up are investigated in the research.
To compare with the experiments, the results agree well for the geometry design and power inputs of two-zone heater. The optimum of the two-zone heater improves the temperature uniformity of susceptor significantly. The temperature difference within wafer can achieve 6.73℃ and the error of the susceptor temperature is within 1%. The reflector can increase the efficiency of the two heater and the utilization of the susceptor. The research makes the susceptor temperature to be more uniform, and improves the design capability of semiconductor components.
[1] 經濟部能源局 LED照明節能應用技術手冊 101 12月
[2] 洪駿之, ”以專利分析之觀點探討LED製程技術對中國LED產業及市場的影響”, 台灣, 政治大學, 碩士論文, pp.30-35, 2012.
[3] 陸大成, 段樹坤, 金屬有機化合物氣相外延基礎及應用, 一版, 科學出版社, 北京, 2009年
[4] 方志烈, 半導體照明技術, 電子工業出版社, 2009年
[5] M.J. Cherng, et al, “MOVPE growth of GInAsSb”, Journal of Crystal growth, Vol.77, pp.408-417, 1986.
[6] C. R. Kleijn, “A mathematical model of the hydrodynamics and gas phase reactions in silicon LPCVD in a single wafer reactor”, Journal of Electrochemical Society., Vol. 138, pp2190-2200, 1991.
[7] W. Y. Chung, “Modeling of Cu thin film growth by MOCVD process in a vertical reactor”, Journal of Crystal growth, Vol.180, pp691-697, 1997.
[8] 郭勃亨, “雙加熱器有機金屬化學氣相沉積系統上下加熱板溫度對氮化銦鎵薄膜成長之研究”, 台灣, 國立交通大學, 碩士論文, 2012
[9] R.Schreiner, D.Fahle, B.Schineller, et al, “Growth of GaN, AlGaN and AlN layers for LED manufacturing: Investigations on growth conditions using a “Hotwall” MOCVD system”, USA, CS Mantech conference, 2011.
[10] D. Fahle, H. Behmenburg, C. Mauder, et al, “Growth of GaN in a planetary MOCVD hotwall system”, Journal of Physics status solid, Vol.8, pp2041-2043, 2011.
[11] 詹少彬, “MOCVD 加熱系統研究”, 大陸, 華中科技大學, 碩士論文, 2008.
[12] 王晟, “MOCVD設備氣體輸運與加熱器控制系統設計”,大陸,華中科技大學,碩士論文, 2008
[13] 陳倩翌, “金屬有機化合物化學氣相沉積設備加熱器研究”,大陸,華中科技大學,碩士論文, 2011
[14] 莊達人, VLSI 製造技術, 高立圖書有限公司, 1996.
[15] X. Hong, 半導體製程技術導論, 羅正忠, 張鼎張, 三版, 台灣培生教育出版股份有限公司, 臺北, 民國96年.
[16] 陳玄宗, “以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力”, 國立中央大學, 碩士論文, 民國100年.
[17] S.P. Denbaars, B.Y. Maa, P.D. Dapkus, et al, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, Journal of Crystal growth, Vol.77, pp188-193, 1986.
[18] Zhang X., Moerman I., Sys C., et al, ” Highly uniform AlGaAs/GaAs and InGaAs(P)/InP structure grown in a multiwafer vertical rotating susceptor MOVPE reactor”, Journal of Crystal growth, Vol.170, pp.83-87, 1997.
[19] 劉祥林, 汪連山, 陸大成, et al, “氮化鎵緩衝層生長過程分析”, 半導體學報, Vol.20, pp529-533, 1999.
[20] J.S. Huang, X. Dong, X.D. Luo, et al, “Growth temperature effect on the optical and material properties of AlxInyGa1-x-yN epilayers grown by MOCVD”, Journal of Crystal growth, Vol.247, pp84-90, 2003.
[21] Yang C. C., Chi G. C., Huang C. K., et al ” The improvement of GaN epitaxial layer quality by the design of reactor chamber spacing”, Journal of Crystal growth, Vol.200, pp32-38., 1999.
[22] Frijlink P.M.,” A new versatile, large size MOVPE reactor”, Journal of Crystal growth, Vol.93, pp207-215., 1988.
[23] Martin C., Dauelsberg M., Protzmann H., et al,” Modeling of group –III nitride MOVPE in the closed coupled showerhead reactor and planetary Reactor”, Journal of Crystal growth, Vol.303, pp.318-322, 2007.
[24] A.G. Thompson, “MOCVD technology for semiconductors”, Journal of Materials letters, Vol. 30, pp 255-263, 1996.
[25] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol 287, pp 656-663, 2005.
[26] N. Shibata, and S. Zembutsu., “A boundary layer model for the MOCVD process in a vertical cylinder reactor”, Journal of Applied physics, Vol.26, pp1416-1421, 1987.
[27] D. I. Fotiadis, S.Kieda, K.F. Jensen., “Transport phenomena in a vertical reactors for metalorganic vapor phase epitaxy”, Journal of Crystal growth, Vol.102, pp.441-470, 1990.
[28] H.V. Santen, C.R. Kleijn, Harry, E.A., “Symmetry breaking in a stagnation-flow CVD reactor”, Journal of Crystal growth, Vol.212, pp311-323, 2000.
[29] 林政鑒, 蔡俊宏, 陳立德, ”半導體業廢氣洗滌塔操作實物與探討”, 台灣, 高科技產業研討會論文, 2002.
[30] Mckee M.A., Norris P.E., Stall R.A., et al, “Growth of highly uniform, reproducible InGaAs films in a multiwafer rotating disk reactor by MOCD”, Journal of Crystal growth, Vol.107, pp445-451, 1991.
[31] Weyburne D. W., Ahem B.S., “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD”, Journal of Crystal growth, Vol.170, pp77-82, 1997.
[32] M. Dauelsberg, C. Martin, H. Protzmann et al. “Modeling and process design of III-nitride MOVPE at near-atmosphericpressure in close coupled showerhead and planetary reactors”, Journal of Crystal Growth Vol. 298, pp.418-424, 2007.
[33] M. Dauelsberg, E.J. Thrush, B. Schineller and J. Kaeppeler, “Technology of MOVPE Production Tools”, Elsevier Ltd, 2004.
[34] D. G. Zhao, J. J. Zhu, D. S. Jiang et al. “ Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, Journal of Crystal Growth, Vol.289, pp. 72-75, 2006.
[35] H. W. Jackson, J. L. Watkins, S. Chung et al. “Conductive sphere in a radio frequency field: Theory and applications to positioners, heating, and noncontact measurements”, Journal of Applied Physics, Vol.79, pp.3370-3384, 1996.
[36] T. Murakami, Y. Okuno, and H. Yamasaki. “Performance of rf-assisted magnetohydrodynamics power generator”, Physics of Plasmas, Vol. 12, pp. 113503-1~113503-8, 2005.
[37] L. M. Kaufmann, F. Heuken, M. R. Tilders, et al. “Safety aspects of MOVPE in research and development: a example”, Journal Crystal Growth, Vol. 93, pp. 279-284, 1988
[38] 洪健仁, ”半導體廠局部尾氣處理設備危害與風險評估”, 台灣, 中央大學, 碩士論文,2009.
[39] B. Harris, University Physics, Ver. 2, John Wiley & Sons Inc, USA,1995.
[40] Y. A. Cengel, Heat and mass transfer, McGraw-Hill Education(Asia), Third Edition, Singapore, 2006.
[41] 白長城, 張海興, 方湖寶, 高等學校教材紅外物理, 電子工業出版社, 北京, 1989.
[42] 王冒成, 有限單元法, 清華大學出版社, 北京, 2003.
[43] 邱顯智, “以數值分析法優化MOCVD高溫反應腔體之加熱系統暨實作驗證”, 台灣, 國立中央大學, 碩士論文, 2015