跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳攻善
Cong-Thien Tran
論文名稱: XY strip 探測器均勻度校準
Uniformity calibration for XY strip PPIC
指導教授: 陳鎰鋒
Chen, Ei-Fong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 質子治療利每日進行每日品質保證先進筆形束高空間分辨率和大動態範圍的二維 IC均勻性校準
外文關鍵詞: proton therapy, pencil beam scan, daily quality assurance, large area IC, uniformity calibration
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近質子治療利用先進筆形束掃描 (PBS)非均勻束的特性,掃描大面積輻射場並完成高緊緻性治療。其質子束輪廓具有高劑量梯度是其特徵之一。為確保質子束傳輸系統的可靠性,每日進行每日品質保證(daily QA)工作是有其必要性。據有大面積、高空間分辨率和大動態範圍的二維 IC 陣列或 XY 條平行板電離室 (PPIC) 均為用於此類目的的潛在候選方案。與二維 IC 陣列相比,PPIC 使用較少的讀出通道並呈現更好的空間分辨率 [1]。為了將來自 PPIC 的信號轉換為輻射劑量,均勻性校準和標準源校準是必不可缺。本研究將校準 345.44 × 345.44 mm2 大面積的 PPIC 的均勻性。利用一個點狀微型 X 射線源提供穩定且小的局部輻射,在PPIC 的整個表面掃描 16x16 = 256 個 X 射線點。迷你 X 射線的穩定性和小體積使得操作變得簡單。PPIC 的 2D 增益圖可由 X 射線掃描重建。此時 PPIC 整體增益分佈的相對標準偏差為 3.5%,這對於質子治療中的劑量測量是不可接受的。從 PPIC 的 2D 增益圖中確定了增益因子的兩種變化。變異的第一個原因來自大面積PCB板的變形。變化的第二個原因被認為源於電極和讀出板之間的連接線的長度差異。論文中引入校準算法以提升 PPIC 的均勻性,並將增益相對標準偏差顯著降低至 0.6%。同時均勻性校準算法與探測器及輻射源的操作選項並無關聯。此項改進使 PPIC 能夠用於質子治療劑量測量,充分發揮 PPIC 的功能,可顯著減少日常 QA 的時間要求。


    Recent advanced pencil beam scan (PBS) in proton therapy deploys non-uniform beam which scans across a large radiation field and complete high conformity treatment. High dose gradient in beam profile is one of its characters. To ensure the reliability of the beam delivery system, daily quality assurance (daily QA) is required. 2D array of ICs or XY strip Parallel Plate Ionization Chamber (PPIC) occupying large area, high spatial resolution and large dynamical range, are potential candidates for such purpose. PPIC uses less readout channel and renders better spatial resolution in comparison to 2D array of ICs [1]. In order to convert signal from PPIC into radiation dosage, uniformity calibrations and standard source calibrations are essential. In this study, uniformity of large area PPIC, characterized by a large area of 345.44 × 345.44 mm2, will be calibrated. A point-like mini X-ray source is used to provide a stable and small localized radiation. The total surface of the PPIC was scanned by 16x16 = 256 spots of X-rays. The stability and compact size of the mini X-ray renders an operational simplicity. 2D gain maps of PPIC are reconstructed from the X-ray scan. Fractional standard deviation of gain distribution over the total area of PPIC is found to be 3.5% which is not acceptable for dose measurement in proton therapy. Two variations in gain factor are identified from 2D gain maps of PPIC. The first cause of variation is from the deformation of the large area PCB boards. The second cause of variation is suggested to originate from the differences in length of the connection lines between electrodes and the readout board. Calibration algorithms are introduced to improve uniformity of PPIC and they have significantly reduced gain fractional standard deviation to 0.6%. The uniformity calibration algorithms are indicated to be independent from the operation options of the detector and external radiation source. Such improvement enables the use of PPIC in proton therapy dose measurement. Time requirement of daily QA can be significantly reduced as functions of PPIC will be fully exploited.

    Abstract i Abstract 摘要 ii Acknowledgements iii Table of Contents iv List of Abbreviations vi List of Tables vii List of Figures viii Chapter I Introduction 1 1.1. Proton therapy 1 1.2. Daily quality assurance in proton therapy 3 1.3. Role of ion chamber 4 1.4. Objective and aims 5 1.5. Thesis structure 6 Chapter II Theory 7 2.1. Proton interactions with mater 7 2.2. Proton Bragg peak 12 2.3. Photon interaction with mater 14 2.4. Radiation dose 16 2.5. Ionization chamber 18 Chapter III Instruments and Method 22 3.1. Large area XY strip Parallel Plate Ion Chamber (PPIC) 22 3.2. Selections of operation conditions 24 3.3. Signal processing 27 3.4. Stability of X-ray source 31 3.5. Uniformity experimental setup 33 3.6. Workflow 34 3.7. Analysis method 35 3.7.1 Reconstruction for 2D intensity map and normalization 35 3.7.2 First calibration algorithm 37 3.7.3 Second calibration algorithm 38 3.7.4 Uniformity validation 38 Chapter IV Result and Discussion 40 4.1. Variation of 2D gain maps 40 4.2. First calibration approach 46 4.3. Second calibration approach 51 Chapter V Conclusion 61 Bibliography 62 Appendix 64

    [1] K.J. Chiang, “Application of XY strip detector in proton therapy”, Ph.D. Dissertation, Department of Physics, National Central University, 2017 July.
    [2] A.C. Knopf, A. Lomax, “In vivo proton range verification: a review”, Phys Med Biol. 2013 Aug; 7;58(15), pp: R131-60.
    [3] R. Baskar et. al., “Cancer and radiation therapy: current advances and future directions”, Int J Med Sci. 2012 February; 9(3), pp: 9-193.
    [4] A. Lau, Y. Chen, S. Ahmad, “Range verification of proton radiotherapy with prompt gamma rays”, J Xray Sci Technol. 2013;21(4), pp: 507-14.
    [5] W.P. Levin et. al., "Proton beam therapy", British journal of Cancer, 2005; 93.8, pp: 849-854.
    [6] M. Filipak, “Comparison of dose profiles for proton v. x-ray radiotherapy”, accessed 14th January 2021, https://commons.wikimedia.org/w/index.php?curid=27983203.
    [7] R. Kohno et. al., "Development of continuous line scanning system prototype for
    proton beam therapy" International Journal of Particle Therapy, 2017; 3.4, pp: 429-438
    [8] G.J. Kutcher et. al., “Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40”, Med Phys, 1994 April; 21(4), pp: 581-618.
    [9] B. Arjormandy et. al., “Comparison of surface doses from spot scanning and passively scattered proton therapy beams”, Phys Med Biol, 2009 July, 21;54(14), pp:N295-302.
    [10] IAEA 2000, “IAEA annual report”, accessed 25th July 2020, https://www.iaea.org/publications/reports/annual-report-2000.
    [11] O. Actis et. al., “A comprehensive and efficient daily quality assurance for PBS proton therapy”, Phys. Med. Biol., 2017 June; 62, pp: 1661–1675.
    [12] ICRU78, “Prescribing, Recording, And Reporting Proton Therapy, 2007”, accessed 13th July 2020, https://www.icru.org/report/prescribing-recording-and-reporting-proton-beam-therapy-icru-report-78/ .
    [13] Y.C. Lin et. al., “Monte Carlo simulations for angular and spatial distributions in
    therapeutic-energy proton beams”, Radiation Physics and Chemistry Volume 140, 2017 November, pp: 217-224.
    [14] W.D. Newhauser, R. Zhang, “The physics of proton therapy”, Phys. Med. Biol., 2015 March; 60, pp: R155–R209.
    [15] W.R. Leo., 2nd edition, Techniques for Nuclear and Particle Physics Experiments. New York: Springer-Verlag, 1993.
    [16] H. Paganetti, “Range uncertainties in proton therapy and the role of Monte Carlo simulations”, Phys Med Biol., 2012 June; 7;57(11), pp:R99-117.
    [17] D.L. Bailey et. al., Positron Emission Tomography. Australia: Springer, 2005.
    [18] G.F. Knoll, 2nd edition, Radiation Detection and Measurement. Canada: John Wiley & Sons, 1979.
    [19] K. Eckerman et. al., “ICRP publication 119: Compendium of dose coefficients based on ICRP publication 60”, Annals of the ICRP, 2012; 41, pp: 1-130.
    [20] The Columbia Electronic Encyclopedia, “Ionization chamber”, assessed 21st January 2021, https://encyclopedia2.thefreedictionary.com/ionization+chamber .
    [21] B. Gottschalk et. al., “Radiotherapy Proton Interactions in Matter”, Phys Med Biol., 2018 April; USA.
    [22] B. Arjomandy et. al., “AAPM task group 224: Comprehensive proton therapy machine quality assurance”, Med. Phys. August 2019; 46 (8), pp: 678-704.
    [23] P. Kuess et. al., “Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry”, Phys. Med. Biol. October 2017; 62 pp: 9189–9206.
    [24] P. Kuess et. al., “Characterization of the PTW-34089 type 147 mm diameter large-area ionization chamber for use in light-ion beams”, Phys. Med. Biol., March 2020, 65.
    [25] P. Kuess et. al., “Response homogeneity of large area ionization chambers”, PTCOG 59, June 2021, Absolute and relative dosimetry.

    QR CODE
    :::