跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴湛澄
Chan-Cheng Lai
論文名稱: 極化編碼之相差空間調變
Polar Coded Differential Spatial Modulation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 39
中文關鍵詞: 極化碼
外文關鍵詞: polar code
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 極化碼可將實體獨立的二元通道化為同樣數量的等效位元通道; 在碼長趨近無窮大時,所有位元通道可區分為通道容量趨近1的完美通道與通道容量趨近0的純雜訊通道。於傳輸時只使用接近完美的極化通道,使其傳輸率達通道容量。另一方面,相差空間調變是一種一次只使用一根天線傳送訊號的多天線技術,藉由選擇傳送天線可以多傳額外的資料位元,並避免前導(pilot)訊號的浪費。
    在本論文中,我們將極化碼應用於相差空間調變,針對相差空間調變中天線位元以及訊息位元分別使用不同組極化碼編碼,由模擬結果可以證實此方法有更好的錯誤率,我們也提出用於相差空間調變的低複度調變軟式輸出方法,雖錯誤率略差於原先作法,但大幅降低執行時間。


    Polar code converts the physical independent binary channels into the same number of equivalent bit channels; when the code length approaches infinity, all bit channels can be distinguished into perfect channels with channel capacity approaching 1, and pure noise channels with channel capacity approaching 0. Polar codes only use nearly perfect polarized channels during transmission, so that the transmission rate reaches the channel capacity. On the other hand, differential spatial modulation is a multi-antenna technique that uses only one antenna to transmit signals at a time and avoids pilot overhead. By selecting the transmitting antenna, additional data bits can be transmitted.
    In this paper, we apply polar code to differential spatial modulation. Different sets of polarization codes are used for the antenna bits and message bits in differential spatial modulation. The simulation results prove that this method has better error rate. We also propose a low-complexity soft-output decoding differential spatial modulation. Although the error rate is slightly worse than the original method, the execution time is greatly reduced.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1 背景與研究動機 1 1.2 內容介紹 3 第二章 相關背景回顧 4 2.1 相差空間調變 4 2.1.1 論文[24]提出的低複雜度非同調最大可能性檢測器 5 2.2極化碼回顧 7 2.2.1 通道極化 7 2.2.2二進制離散無記憶通道 8 2.2.3通道合併 9 2.2.4通道分裂 9 2.2.5極化碼編碼 10 第三章 極化碼之同調與非同調檢測 13 3.1極化碼解碼 13 3.1.1 接續消除解碼法 13 3.1.2 置信傳播解碼法 15 3.2 極化碼之同調檢測 17 3.3 極化碼之非同調檢測 18 第四章 極化編碼之相差空間調變 20 4.1 極化編碼之相差空間調變 20 4.2使用不同組極化碼編碼之相差空間調變方案 22 4.3低複雜度的DSM軟訊息輸出檢測器 24 第五章 結論 27 參考文獻 28

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
    [4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
    [6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
    [7] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201-1220, Jun. 2017.
    [8] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential spacetime shift keying: A dispersion matrix approach,” IEEE Trans. Commun.,vol. 58, no. 11, pp. 3219–3230, Nov. 2010.
    [9] S. Sugiura, S. Chen, H. Haas, P.M. Grant, and L. Hanzo, “Coherent versus non-coherent decode-and-forward relaying aided cooperative space-time shift keying,” IEEE Trans. Commun., vol. 59, no. 6, pp. 1707–1719, Jun. 2011.
    [10] S. Sugiura and L. Hanzo, “Effects of channel estimation on spatial modulation,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 805–808, Dec. 2012.
    [11] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, “Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
    [12] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
    [13] W. Zhang, Q. Yin, and H. Deng, “Differential full diversity spatial modulation and its performance analysis with two transmit antennas,” IEEE Commun. Lett., vol. 19, no. 4, pp. 677–680, Apr. 2015.
    [14] P. A. Martin, “Differential spatial modulation for APSK in time-varying fading channels,” IEEE Commun. Lett., vol. 19, no. 7, pp. 1261–1264, Jul. 2015.
    [15] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity near-ML differential spatial modulation detector,” IEEE Signal Proc. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
    [16] J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, and M. H. Lee, “Differential spatial modulation with Gray coded antenna activation order,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1100–1103, Jun. 2016.
    [17] M. Zhang, M. Wen, X. Cheng, and L. Yang, “A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation,” IEEE Trans.Wireless Commun., vol. 15, no. 9, pp. 6356–6370, Sep. 2016.
    [18] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
    [19] J. Liu, L. Dan, P. Yang, L. Xiao, F. Yu, and Y. Xiao, “High-rate APSK-aided differential spatial modulation: Design method and performance analysis,” IEEE Commun. Lett., vol. 21, no. 1, pp. 168–171, Jan. 2017.
    [20] N. Ishikawa and S. Sugiura, “Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,” IEEE Wireless Commun. Lett., vol. 16, no. 3, pp. 1908–1920, Mar. 2017.
    [21] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,” IEEE Wireless Commun. Lett., vol. 65, no. 10, pp. 4260–4272, Oct. 2017.
    [22] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [23] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Sys. Tech. Journal,
    vol. 27, pp. 379- 423, 1948.
    [24] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr. 2019.
    [25] J. Liu, L. Xiao, Y. Xiao “A Low-complexity Soft-Decision-aided Detector for Differential Spatial Modulation” 2017.
    [26] Z. Babar, Z. B. K. Egilmez, L. Xiang, D. Chandra, R. G. Maunder, S. X. Ng and L. Hanzo “Polar Codes and Their Quantum-Domain Counterparts” 27 August 2019.
    [27] J. Sha, J. Liu, Z. Wang, “ Improved BP decoder for polar codes based on a modified kernel matrix,” 2016.
    [28] 3GPP TS 38.212 V15.1.1, “NR multiplexing and channel coding,” 3rdGeneration Partnership Project Std. 3GPP, 2018.
    [29] L. Hanzo, T. Liew, B. Yeap, R. Y. S. Tee, and S. X. Ng, “Turbo coding, turbo equalisation, and space-time coding for transmission over fading channels,” Hoboken, NJ: Wiley, 2011.

    QR CODE
    :::