| 研究生: |
吳瑞鴻 Jui-Hung Wu |
|---|---|
| 論文名稱: |
17-4 PH不銹鋼高溫機械性質及疲勞破裂行為研究 HIGH-TEMPERATURE MECHANICAL PROPERTIES, FATIGUE, AND FRACTURE BEHAVIOR OF 17-4 PH STAINLESS STEEL |
| 指導教授: |
林志光
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 頻率效應 、應變速率效應 、動態應變時效 、富化銅析出物 、17-4 PH不銹鋼 、高溫環境 、機械性質 、高週疲勞 、低週疲勞 、潛變疲勞 |
| 外文關鍵詞: | 17-4 PH stainless steel, copper-rich precipitates, dynamic strain aging, strain rate effect, frequency effect, creep-fatigue, low-cycle fatigue, mechanical properties, high-cycle fatigue, high temperatures |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之宗旨在探討三種熱處理狀態(Condition A固溶處理、H900頂時效處理及H1150過時效處理)之17-4 PH麻田散鐵基不銹鋼高溫機械、疲勞與破裂行為。高溫拉伸結果顯示,除Condition A在400oC較長時間持溫的降伏強度會因富銅相的析出強化效應而高於其它溫度下的降伏強度外,在200至500oC間,各熱處理狀態之高溫降伏強度均隨環境溫度的上升而遞減。此外,三種熱處理狀態於不同溫度下之降伏及高週疲勞強度比較,均為H900最高,Condition A次之,H1150最低。
在環境溫度對高週疲勞強度的影響方面,除Condition A在400oC及H900在300oC、20 Hz的長壽命區外,各熱處理狀態的高週疲勞強度大致上隨著溫度的增加而降低,其原因為降伏強度隨環境溫度的上升而下降所致。在400oC下,由於富銅相的即時(in-situ)析出強化效應,Condition A的高週疲勞強度會優於其它溫度下的疲勞強度。而H900頂時效處理在300oC、20 Hz的高週疲勞強度比其它低溫下的值高的原因,則是由於表面氧化層保護及熱激活化的差排回復兩機制作用所造成的。
在負載頻率對高週疲勞強度的影響方面,除H900在400oC下,2 Hz的疲勞強度會略低於20 Hz的疲勞強度外,在300oC及400oC,任一熱處理狀態在兩頻率下的疲勞強度均相同,並不受頻率效應的影響。而在500oC下,2 Hz的高週疲勞強度會因潛變機制的同時作用而明顯低於20 Hz的。此外,在500oC、2 Hz下的高週疲勞破裂型式會傾向於穿沿晶的混合模式,且晶界上亦有潛變孔洞的生成。高週疲勞破斷面的觀察顯示,在300oC及400oC短壽命區,兩種頻率下之三種熱處理狀態的疲勞裂縫均由試棒表面的滑移帶起始。而在500oC短壽命區,則因一開始材料強度的軟化且受力較大,其破裂型態近似於拉伸的破斷模式。反之在長壽命區,各溫度下之三種熱處理狀態的疲勞裂縫則轉由試棒的內部起始。
在低週疲勞方面,Condition A在300及400oC下,因動態應變時效(DSA)的作用,材料會產生明顯的循環硬化現象。其中即時的析出強化效應亦是造成Condition A於400oC下循環硬化的原因之一。至於H900及H1150在300及400oC下,其循環應力反應(CSR)曲線則呈一水平直線,並無發生循環硬化或軟化。而在500oC下,由於熱激活化的差排回復作用,三種熱處理狀態均呈循環軟化的反應。其中富銅相的粗大化亦是造成Condition A及H900於500oC下循環軟化的因素之一。此外,在一給定的溫度下,各熱處理狀態的低週疲勞壽命循環數隨應變速率的降低而減少,其原因為DSA的作用所致。低週疲勞破斷面顯示,在所有的測試條件下,三種熱處理狀態的疲勞破裂型式均為穿晶模式。
High-temperature mechanical and fatigue properties have been investigated for 17-4 PH stainless steel in three different conditions, namely, unaged (Condition A), peak-aged (H900) and overaged (H1150) conditions. The high-temperature yield strength of each condition was decreased with an increase in temperature from 200 to 500oC except for Condition A tested at 400oC with a longer hold-time where strengths were superior to the lower temperature ones due to a precipitation-hardening effect. Given an aged alloy at a temperature higher than the initial age-treatment temperature, the hardness value was decreased with an increase in exposure time as a result of a coarsening effect of copper-rich precipitates.
The yield strength and high-cycle fatigue (HCF) strength for the three given conditions at a given temperature took the following order: H900 > Condition A > H1150. S-N curves showed that the HCF strengths of each material condition were decreased with increasing temperature as a result of a reduction in yield strength, except for Condition A at 400oC as well as for H900 under 20 Hz at 300oC in the long life regime. The fatigue strengths of Condition A at tested 400oC were greater than those at lower temperatures as a result of an in-situ precipitation-hardening effect. The fatigue strengths of Condition H900 in long life regime at 300oC were superior to those at lower temperatures due to the mechanisms of surface oxidation and thermal activation of dislocations.
As for the frequency effect (2 and 20 Hz) on HCF, S-N results indicated that at 300 and 400oC, there was generally no difference in fatigue strength between 2 and 20 Hz, except for H900 tested at 400oC where the fatigue strength at 2 Hz was lower than that at 20 Hz. At 500oC, the fatigue strength of each condition at 2 Hz was lower than that at 20 Hz due to occurrence of a creep mechanism at this low frequency. At 500oC and 2 Hz, the HCF fracture mode exhibited a mixed mode of transgranular and intergranular cracking and grain boundary cavities were also observed. Fractography observations indicated that the crack initiation site, crack propagation path and fracture surface morphology in HCF were functions of testing temperature, loading frequency and applied cyclic stress level.
The cyclic stress response (CSR) in low-cycle fatigue (LCF) for Condition A tested at 300 and 400oC showed markedly cyclic hardening due to an influence of dynamic strain aging (DSA). An in-situ precipitation hardening effect was also found to be partially responsible for the cyclic hardening in Condition A at 400oC. For H900 and H1150 conditions tested at 300 and 400oC, the CSR exhibited a stable stress level before a fast load drop indicating no cyclic hardening or softening. At 500oC, cyclic softening was observed for all given material conditions because of a thermal dislocation recovery mechanism. The cyclic softening behavior in Conditions A and H900 tested at 500oC was also attributed partially to the coarsening of Cu-rich precipitates. The LCF life in cycles for each material condition tested at a given temperature was decreased with decreasing strain rate as a result of an enhanced DSA effect. At all given LCF testing conditions, transgranular cracking was the dominant fracture mode.
1. W. F. Smith, Structure and Properties of Engineering Alloys, 2nd Ed., McGraw-Hill, Inc., New York, USA, 1993.
2. U. K. Viswanathan, S. Banerjee, and R. Krishnan, “Effect of Aging on the Microstructure of 17-4 PH Stainless Steel,” Materials Science and Engineering, Vol. A104, 1988, pp. 181-189.
3. H. J. Rack and D. Kalish, “The Strength, Fracture Toughness, and Low Cycle Fatigue Behavior of 17-4 PH Stainless Steel,” Metallurgical Transactions, Vol. 5, 1974, pp. 1595-1605.
4. C.-K. Lin and W.-J. Tsai, “Corrosion Fatigue Behaviour of a 15Cr-6Ni Precipitation-Hardening Stainless Steel in Different Tempers,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 23, 2000, pp. 489-497.
5. F. B. Pickering, “Physical Metallurgy of Stainless Steel Developments,” International Metals Reviews, Vol. 21, 1976, pp. 227-268.
6. R. D. K. Misra, G. Y. Prasad, T. V. Balasubramanian, and P. R. Rao, “Effect of Phosphorus Segregation on Impact Toughness Variation in 17-4 PH Precipitation Hardened Stainless Steel,” Scripta Metallurgica, Vol. 20, 1986, pp. 713-716.
7. R. D. K. Misra, G. Y. Prasad, T. V. Balasubramanian, and P. R. Rao, “On Variation of Impact Toughness in 17-4 PH Precipitation Hardened Stainless Steel,” Scripta Metallurgica, Vol. 21, 1987, pp. 1067-1070.
8. “Carpenter Precipitation Hardening Stainless Steels,” Manufacturer’s Product Bulletin, Carpenter Technology Co., PA, 1986.
9. K. C. Antony, “Aging Reactions in Precipitation Hardenable Stainless Steel,” Journal of Metals, 1963, pp. 922-927.
10. U. K. Viswanathan, P. K. K. Nayar, and R. Krishnan, “Kinetics of Precipitation in 17-4 PH Stainless Steel,” Materials Science and Technology, Vol. 5, 1989, pp. 346-349.
11. X. Zang, ”Microstructural Study of 17-4 PH Steel after Aging Treatment,” Transactions of Metal Heat Treatment, Vol. 12, 1991, pp. 23-29. (in Chinese)
12. G. Huang, “Study on the Structure and Performance of 17-4 PH Stainless Steel,” Iron and Steel, Vol. 33, 1998, pp. 44-46. (in Chinese)
13. M. U. Islam, G. Campbell, and R. Hsu, “Fatigue and Tensile Properties of EB Welded 17-4 PH Steel,” Welding Journal, Vol. 68, 1989, pp. 45-50.
14. S. Isogawa, H. Yoshida, Y. Hosoi, and Y. Tozawa, “Improvement of the Forgeability of 17-4 PH Precipitation Hardening Stainless Steel by Ausforming,” Journal of Materials Processing Technology, Vol. 74, 1998, pp. 298-306.
15. Y. Tan, J. Wang, and S. Wang, “Phase Transformation of 17-4 PH Steel in Aging Processes,” Transactions of Metal Heat Treatment, Vol. 14, 1993, pp. 1-7.
16. C. N. Hsiao, C. S. Chiou, and J. R. Yang, “Aging reactions in a 17-4 PH Stainless Steel,” Materials Chemistry and Physics, Vol. 74, 2002, pp. 134-142.
17. M. Murayama, Y. Katayama, and K. Hono, “Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400oC,” Metallurgical and Materials Transactions A, Vol. 30, 1999, pp. 345-353.
18. Metals Handbook, 10th Ed., Vol. 1, ASM International, Materials Park, OH, 1990, pp. 930-949.
19. K. C. Russel and L. M. Brown, “A Dispersion Strengthening Model Based on Differing Elastic Moduli Applied to the Iron-Copper System,” Acta Metallurgica, Vol. 20, 1972, pp. 969-974.
20. E. Hornbogen, “The Role of Strain Energy During Precipitation of Copper and Gold from Alpha Iron,” Acta Metallurgica, Vol. 10, 1962, pp. 525-533.
21. A. Youle and B. Ralph, “A study of the Precipitation of Copper from a-Iron in the Pre-Peak to Peak Hardness Range of Aging,” Metal Science Journal, Vol. 6, 1972, pp. 149-152.
22. M. R. Krishnadev and I. Le May, “Microstructure and Mechanical Properties of a Commercial Low-Carbon Copper-Bearing Steel,” Journal of the Iron and Steel Institute, Vol. 208, 1970, pp. 458-462.
23. P. J. Orthen, M.L. Jenkins, G. D. W. Smith, and W. J. Phythian, “Transmission Electron Microscope Investigations of the Structure of Copper Precipitates in Thermally-Aged Fe-Cu and Fe-Cu-Ni,” Philosophical Magazine Letters, Vol. 64, 1991, pp. 383-391.
24. S. R. Goodman, S. S. Brenner, and J. R. Low, Jr., “An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper, Part I: Field-Ion Microscopy,” Metallurgical Transactions, Vol. 4, 1973, pp. 2363-2369.
25. S. R. Goodman, S. S. Brenner, and J. R. Low, Jr., “An FIM-Atom Probe Study of the Precipitation of Copper from Iron-1.4 At. Pct Copper, Part II: Atom Probe Analyses,” Metallurgical Transactions, Vol. 4, 1973, pp. 2371-2378.
26. E. Hornbogen and R. C. Glenn, “A Metallographic Study of Precipitation of Copper from Alpha Iron,” Transactions of the Metallurgical Society of AIME, Vol. 218, 1960, pp. 1064-1070.
27. G. R. Speich and R. A. Oriani, “The Rate of Coarsening of Copper Precipitate in an Alpha-Iron Matrix,” Transactions of the Metallurgical Society of AIME, Vol. 233, 1965, pp. 623-631.
28. N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, “Precipitation and Phase Transformation of Copper Particles in Low Alloy Ferritic and Martensitic Steels,” Materials Transactions, JIM, Vol. 40, 1999, pp. 268-277.
29. H. R. Habibi-Bajguirani and M. L. Jenkins, “High-Resolution Electron Microscopy Analysis of the Structure of Copper in a Martensitic Stainless Steel of Type PH 15-5,” Philosophical Magazine Letters, Vol. 73, 1996, pp. 155-162.
30. J. W. Edington, Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold Company, New York, USA, 1976.
31. C. S. Barrett and T. B. Massalski, Structure of Metals, 3rd Ed., McGraw-Hill, Inc., New York, USA, 1966.
32. E. A. Branddes, Smithells Metals Reference Book, 6th Ed., Butterworths, London, 1983.
33. D. T. Peters and C. R. Cupp, “ The Kinetics of Aging Reactions in 18 Pct Ni Maraging Steels,” Transactions of the Metallurgical Society of AIME, Vol. 236, 1966, pp. 1420-1429.
34. E. R. Miner, J. K. Jackson, and D. F. Gibbons, “Internal Friction in 18 Pct Ni Maraging Steels,” Transactions of the Metallurgical Society of AIME, Vol. 236, 1966, pp. 1565-1570.
35. S. Floreen, “The Physical Metallurgy of Maraging Steels,” Metallurgical Reviews, Vol. 13, 1968, pp. 115-128.
36. “Armco 17-4 PH Precipitation-Hardening Stainless Steel Bar and Wire”, Manufacture’s Product Data, Armco Steel Corporation, USA, 1975.
37. W. C. Leslie, The Physical Metallurgy of Steels, McGraw-Hill, Inc., New York, NY, 1981.
38. M. Courtnall and F. B. Pickering, “The Effect of Alloying on 485oC Embrittlement,” Metal Science, Vol. 10, 1976, pp. 273-276.
39. L. L. Horton and M. K. Miller, “The Influence of Retained Austenite on a-a’ Phase Decomposition in Fe-Cr Alloys,” Scripta Metallurgica et Materialia, Vol. 30, 1994,pp. 1305-1310.
40. M. K. Miller, I. M. Anderson, J. Bentley, and K. F. Russell, “Phase Separation in the Fe-Cr-Ni System,” Applied Surface Science, Vol. 94/95, 1996, pp. 391-397.
41. B. Yrieix and M. Guttmann, “Aging Between 300 and 450oC of Wrought Martensitic 13-17 Wt-Percent-Cr Stainless-Steels,” Materials Science and Technology, Vol. 9, 1993, pp. 125-134.
42. M. K. Miller and M. G. Burke, “An Atom Probe Field-Ion Microscopy Study of Neutron-Irradiated Pressure-Vessel Steels,” Journal of Nuclear Materials, Vol. 195, 1992, pp. 68-82.
43. B. C. Syrett, R. Viswanathan, S. S. Wing, and J. E. Wittig, “Effect of Microstructure on Pitting and Corrosion Fatigue of 17-4 PH Turbine Blade Steel in Chloride Environments,” Corrosion, Vol. 38, 1982, pp. 273-282.
44. K. S. Raja and K. P. Rao, “Stress Corrosion Cracking Behavior of 17-4 PH Stainless Steel Weldments at Open-Circuit Potentials,” Journal of Materials Science Letters, Vol. 12, 1993, pp. 957-960.
45. T. M. Rust and V. P. Swaminathan, “Corrosion Fatigue Testing of Steam Turbine Blading Alloys,” pp. 3.107-3.130 in Corrosion Fatigue of Steam Turbine Blade Materials, Edited by R. I. Jaffee, Pergamon Press, New York, 1984.
46. C.-K. Lin and C.-P. Lin, “Corrosion Fatigue Behavior of 17-4 PH Stainless Steel in Different Tempers,” pp. 598-613 in Fatigue and Fracture Mechanics, Vol. 33, ASTM STP 1417, Edited by W. G. Reuter and R. S. Piascik, American Society for Testing and Materials, West Conshohocken, PA, 2003.
47. “Standard Test Method for Tension Testing of Metallic Materials,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 78-98.
48. “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 471-475.
49. “Standard Practice for Strain-Controlled Fatigue Testing,” ASTM E606-92, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 528-542.
50. “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation,” ASTM E975-95, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, Philadelphia, USA, 1998, pp. 675-680.
51. B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, Inc., California, USA, 1978.
52. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd Ed., International Thomson Publishing, New York, 1992.
53. X. Xia, Y. Li, and D. Wu, “Effect of Overaging on Microstructure and Properties of a Steel 17-4 PH,” Material Science and Technology, Vol. 5, 1997, pp. 106-110. (in Chinese)
54. F. W. Jones and W. I. Pumphrey, “Free Energy and Metastable States in the Iron-Nickel and Iron-Manganese Systems,” Journal of the Iron and Steel Institute, Vol. 163, 1949, pp. 121-131.
55. T. Isomoto and N. S. Stoloff, “Effect of Microstructure and Temperature on High Cycle Fatigue of Power Metallurgy Astroloy,” Materials Science and Engineering, Vol. A124, 1990, pp. 171-181.
56. J. Botella, C. Merino, and E. Otero, “A Comparison of the High-Temperature Oxidation of 17Cr-2Ni and 18Cr-8Ni Austenitic Stainless Steels at 973 K,” Oxidation of Metals, Vol. 49, 1998, pp. 297-324.
57. G. R. Leverant and M. Gell, “The Influence of Temperature and Cyclic Frequency on the Fatigue Fracture of Cube Oriented Nickel-Base Superalloy Single Crystals,” Metallurgical Transactions A, Vol. 6A, 1975, pp. 367-371.
58. D. J. Duquette and M. Gell, “The Effect of Environment on the Mechanism of Stage I Fatigue Fracture,” Metallurgical Transactions, Vol. 3, 1972, pp. 1899-1905.
59. J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., New Jersey, USA, 1990.
60. R. H. Priest and E. G. Ellison, “An Assessment of Life Analysis Techniques for Fatigue Creep Situations,” Res Mechanica, Vol. 4, 1982, pp. 127-150.
61. D. W. Maclachlan and D. M. Knowles, “Fatigue Behaviour and Lifing of Two Single Crystal Superalloys,” Fatigue and Fracture of Engineering Materials Structures, Vol. 24, 2001, pp. 503-521.
62. J. A. Collins, Failure and Materials in Mechanical Design, 2nd Ed., John Wiley & Sons, Inc., New York, USA, 1993.
63. K. Nagai, O. Umezawa, T. Yuri, and K. Ishikawa, “Internal Crack Initiation in High Cycle Fatigue at Cryogenic Temperatures,” Engineering Fracture Mechanics, Vol. 40, 1991, pp. 957-965.
64. K. B. S. Rao, H. Schiffers, and H. Schuster, “Influence of Time and Temperature Dependence Processes on Strain Controlled Low Cycle Fatigue Behaviour of Alloy 617,” Metallurgical Transactions A, Vol. 19A, 1988, pp. 359-371.
65. S. L. Mannan, “Role of Dynamic Strain Aging in Low Cycle Fatigue,” Bulletin of Materials Science, Vol. 16, 1993, pp. 561-582.
66. V. S. Srinivasan, R. Sandhya, K. B. S. Rao, S. L. Mannan, and K. S. Raghavan, “Effects of Temperature on the Low Cycle Fatigue Behaviour of Nitrogen Alloyed Type 316L Stainless Steel,” International Journal of Fatigue, Vol. 13, 1991, pp. 471-478.
67. S. Herenu, I Alvarez-Armas, and A. F. Armas, “The Influence of Dynamic Strain Aging on the Low Cycle Fatigue of Duplex Stainless Steel,” Scripta Materialia, Vol. 45, 2001, pp. 739-745.
68. M. J. Roberts and W. S. Owen, “Unstable Flow in Martensite and Ferrite,” Metallurgical Transactions, Vol. 1, 1970, pp. 3203-3213.
69. A. Nagesha, M. Valsan, R. Kannan, K. B. S. Rao, and S. L. Mannan, “Influence of Temperature on the Low Cycle Fatigue Behaviour of a Modified 9Cr-1Mo Ferritic Steel,” International Journal of Fatigue, Vol. 24, 2002, pp. 1285-1293.
70. R. Sandhya, K. B. S. Rao, S. L. Mannan, and R. Devanathan, “Substructural Recovery in a Cold Worked Ti-Modified Austenitic Stainless Steel During High Temperature Low Cycle Fatigue,” International Journal of Fatigue, Vol. 23, 2001, pp. 789-797.
71. V. S. Srinivasan, M. Valsan, R. Sandhya, K. B. S. Rao, S. L. Mannan, and D. H. Sastry, “High Temperature Time-Dependent Low Cycle Fatigue Behaviour of a Type 316L(N) Stainless Steel,” International Journal of Fatigue, Vol. 21, 1999, pp. 11-21.
72. K. B. S. Rao, M. Valsan, R. Sandhya, S. L. Mannan, and P. Rodriguez, “An Assessment of Cold Work Effects on Strain-Controlled Low Cycle Fatigue Behaviour of Type 304 Stainless Steel,” Metallurgical Transactions, Vol. 24A, 1993, pp. 913-924.
73. A. Plumtree and L. Pawlus, “Substructural Developments during Strain Cycling of Wavy Slip Materials,” pp. 81-97 in Low Cycle Fatigue, ASTM STP 942, Edited by H. D. Solomon, G. R. Halford, L. P. Kaisand, and B. N. Leis, American Society for Testing and Materials, Philadelphia, PA, 1988.
74. R. Sandhya, K. B. S. Rao, and S. L. Mannan, “The Effect of Temperature on the Low Cycle Fatigue Properties of a 15Cr-15Ni, Ti Modified Austenitic Stainless Steel,” Scripta Materialia, Vol. 41, 1999, pp. 921-927.