跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許書瑜
Shu-Yu Hsu
論文名稱: 鄰苯二甲酸氫鉀對於電容去離子系統脫鹽之影響
Influences of potassium hydrogen phthalate on desalination of capacitive deionization
指導教授: 秦靜如
Ching-Ju Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 100
中文關鍵詞: 碳氣凝膠電容去離子有機物
外文關鍵詞: Carbon aerogel, Capacitive deionization, Organic matter
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電容去離子是一種新穎的海水淡化技術。有機質在環境中無所不在且扮演著重要的角色。然而,在以前的電容去離子脫鹽研究中,實驗室主要使用氯化鈉溶液進行初步測試。因此,在本研究中進行了鄰苯二甲酸氫鉀(KHP),氯化鈉(NaCl)和KHP / NaCl對碳氣凝膠的吸附和脫附實驗。並利用Ritchie,Ho-McKay和intra-particle diffusion model三種吸附動力模式,以及Langmuir和Freundlich isotherm兩種等溫吸附模式來對用碳氣凝膠吸附氯化鈉進行模擬。從吸附和脫附實驗結果中可得知,KHP可以完全被電吸附且不能從碳氣凝膠中脫附出來。在平衡時,對於5 mg / L KHP,電容吸附量為約0.54 mg / g,對於10 mg / L KHP,電容吸附量為約1.09 mg / g。 5 mg / L和10 mg/L KHP的鈉離子電容吸附量高於0 mg / L KHP。KHP對鈉離子電吸附的影響取決於初始NaCl的濃度。然而,當NaCl濃度低於50 mg / L時,KHP具有抑制鈉離子吸附的作用。可以看出,有機物對電容去離子系統脫鹽是非常重要的因素。KHP的吸附模式為the Ritchie吸附動力模式,NaCl和KHP/NaCl的吸附模式則為the intra-particle diffusion吸附動力模式和the Temkin等溫吸附模式。


    Capacitive deionization (CDI) is an innovative desalination technology. Organic matter is ubiquitous and plays a significant role in the environment. However, the laboratory mostly uses sodium chloride solution to carry out a preliminary test in the past studies of CDI for desalination. In order to understand whether organic matter interferes the desalination performance of CDI. Therefore, CDI experiments of potassium hydrogen phthalate (KHP), sodium chloride (NaCl) and KHP/NaCl on carbon aerogel were conducted in this study. Three kinetic models (Ritchie, Ho-McKay and intra-particle diffusion model) and two isotherm models (Langmuir and Freundlich isotherm) are used to model adsorption of NaCl on carbon aerogel. CDI experiments showed that KHP can be adsorbed completely by electro-sorption, but cannot be desorbed from carbon aerogel. At equilibrium, the maximum adsorption amount of KHP is about 0.54 mg/g for 5 mg/L KHP and about 1.09 mg/g for 10 mg/L KHP. The electro-sorption adsorption amount of 〖"Na" 〗^"+" for 5 mg/L and 10 mg/L KHP are higher than 0 mg/L KHP. The effects of KHP on electro-sorption for NaCl depends upon the concentration of NaCl. However, when the concentration of NaCl is lower than 50 mg/L, KHP has inhibitory effect on adsorption of 〖"Na" 〗^"+" . It can be seen that organic matter is very important factor for the desalination of CDI. The experimental data of KHP has been well fitted with the Ritchie kinetic adsorption model, and the experimental data of NaCl and KHP/NaCl have been fitted with the intra-particle diffusion kinetic adsorption model and the Temkin adsorption isotherm model.

    ABSTRACT V 摘要 VII Content IX List of Figures XII List of Tables XIV CHAPTER I. INTRODUCTION 1 1.1 Background 1 1.2 Objective 2 1.3 Procedure of Research 3 CHAPTER II. BACKGROUND 4 2.1 Capacitive Deionization 4 2.1.1 Theory of ion transport in CDI 4 2.1.2 Electric double layer 6 2.1.3 Electrochemical reactions in CDI electrodes 8 2.2 Operation factors of CDI 11 2.2.1 The operational mode 15 2.2.2 Feed water composition 17 2.2.3 Electrode material 17 2.2.4 Applied voltage 19 2.3 Carbon Aerogel 20 2.3.1 The Preparation of Carbon Aerogel 20 2.3.2 Characterization of Carbon Aerogel 22 2.3.3 Adsorption factor of Carbon Aerogel 26 2.4 Adsorption mechanism 28 2.4.1 Pseudo-first-order kinetic model 28 2.4.2 Pseudo-second-order kinetic model 29 2.4.3 Intra-particle diffusion model 30 CHAPTER III. MATERIALS AND MTHODS 32 3.1 Materials 32 3.1.1 Chemicals 32 3.1.2 CDI system 32 3.1.3 Potassium hydrogen phthalate 34 3.2 Methods 35 3.2.1 CDI of NaCl and KHP 35 3.2.2 Water Sample Analysis 36 3.2.3 Characteristic Analysis of Carbon Aerogel 39 3.3 Data Analysis 40 CHAPTER IV. RESULTS AND DISCUSSION 43 4.1 Characterization of Carbon Aerogel 43 4.1.1 Accelerated Surface Area and Porosimetry System Analysis 43 4.1.2 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 45 4.2 CDI for KHP 47 4.2.1 Adsorption and desorption of KHP 47 4.2.2 Adsorption kinetics of KHP 51 4.3 CDI for NaCl 56 4.3.1 CDI profile of NaCl 56 4.3.2 Adsorption kinetics of NaCl 59 4.3.3 Adsorption isotherm of NaCl 64 4.3.4 Desorption of NaCl 67 4.4 Effects of KHP on the deionization of NaCl 69 4.4.1 Adsorption of KHP/NaCl 69 4.4.2 Adsorption kinetics of KHP/NaCl 71 4.4.3 Adsorption isotherm of KHP/NaCl 79 4.4.4 Desorption of KHP/NaCl 87 4.6 Characteristics of the carbon aerogel after electro-sorption 90 CHAPTER V. CONCLUSION AND SUGGESTION 94 5.1 Conclusion 94 5.2 Suggestion 95 REFERENCES 97

    AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I. and Hilal, N., "Application of Capacitive Deionisation in water desalination: A review", Desalination, 342, 3-15, (2014).

    Biniak, S., Świątkowski, A., Pakuła, M., Sankowska, M., Kuśmierek, K. and Trykowski, G., "Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes", Carbon, 51, 301-312, (2013).

    Bouhadana, Y., Avraham, E., Noked, M., Ben-Tzion, M., Soffer, A. and Aurbach, D., "Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes", The Journal of Physical Chemistry C, 115, 16567-16573, (2011).

    Bouhadana, Y., Ben-Tzion, M., Soffer, A. and Aurbach, D., "A control system for operating and investigating reactors: The demonstration of parasitic reactions in the water desalination by capacitive de-ionization", Desalination, 268, 253-261, (2011).

    Celzard, A., Fierro, V. and Amaral-Labat, G., Chapter 7 - Adsorption by Carbon Gels A2 - Tascón, Juan M.D. In Novel Carbon Adsorbents, 207-244, (2012).

    Choi, J. H., "Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization", Desalination, 347, 224-229, (2014).

    Dykstra, J. E., Dijkstra, J., van der Wal, A., Hamelers, H. V. M. and Porada, S., "On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization", Desalination, 390, 47-52, (2016).

    Figueiredo, J. L. and Pereira, M. F. R., Chapter 15 - Porous Texture Versus Surface Chemistry in Applications of Adsorption by Carbons A2 - Tascón, Juan M.D. In Novel Carbon Adsorbents, 471-498, (2012).

    GABELICH, C. J., TRAN, T. D. and SUFFET, I. H. M., "Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels", Environ. Sci. Technol. , 36, 3010-3019, (2002).

    Gabelich, C. J., Xu, P. and Cohen, Y., Chapter 10 Concentrate Treatment for Inland Desalting. In Sustainability Science and Engineering, ed.; C. E. Isabel and I. S. Andrea, 295-326, (2010).

    Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, 34, 451-465, (1999).

    Horvath, G. and Kawazoe, K., "METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON", Journal of Chemical Engineering of Japan, 16, 470-475, (1983).

    Hou, C. H. and Huang, C. Y., "A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization", Desalination, 314, 124-129, (2013).

    Jeon, S. I., Park, H. R., Yeo, J. G., Yang, S. C., Cho, C. H., Han, M. H. and Kim, D. K., "Desalination via a new membrane capacitive deionization process utilizing flow-electrodes", Energy & Environmental Science, 6, 1471-1475, (2013).

    Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J. N., Béguin, F. and Pirard, J. P., "Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials", Carbon, 43, 2481-2494, (2005).

    Kim, T. and Yoon, J., "Relationship between capacitance of activated carbon composite electrodes measured at a low electrolyte concentration and their desalination performance in capacitive deionization", Journal of Electroanalytical Chemistry, 704, 169-174, (2013).

    Kumar, R., Sen Gupta, S., Katiyar, S., Raman, V. K., Varigala, S. K., Pradeep, T. and Sharma, A., "Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization", Carbon, 99, 375-383, (2016).
    Kurzweil, P., Chapter 19 - Electrochemical Double-layer Capacitors A2 - Moseley, Patrick T. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing, 345-407, (2015).

    Lee, J. B., Park, K. K., Eum, H. M. and Lee, C. W., "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, 196, 125-134, (2006).

    Lee, J. H., Bae, W. S. and Choi, J. H., "Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159-163, (2010).

    Mall, I. D., Srivastava, V. C., Agarwal, N. K. and Mishra, I. M., "Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses", Chemosphere, 61, 492-501, (2005).

    Oren, Y., "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)", Desalination, 228, 10-29, (2008).

    Porada, S., Zhao, R., van der Wal, A., Presser, V. and Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization", Progress in Materials Science, 58, 1388-1442, (2013).

    Särkkä, H., Vepsäläinen, M. and Sillanpää, M., "Natural organic matter (NOM) removal by electrochemical methods — A review", Journal of Electroanalytical Chemistry, 755, 100-108, (2015).

    Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Lee, J. and Moon, S. H., "Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water Research, 44, 2267-2275, (2010).

    Show, Y. and Imaizumi, K., "Electric double layer capacitor with low series resistance fabricated by carbon nanotube addition", Diamond and Related Materials, 16, 1154-1158, (2007).

    Sivarajasekar, N. and Baskar, R., "Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: Process modeling, analysis and optimization using statistical design", Journal of Industrial and Engineering Chemistry, 20, 2699-2709, (2014).

    Szczurek, A., Amaral-Labat, G., Fierro, V., Pizzi, A., Masson, E. and Celzard, A., "The use of tannin to prepare carbon gels. Part I: Carbon aerogels", Carbon, 49, 2773-2784, (2011).

    Tamon, H., "Carbon Aerogels", 898-900, (2001).

    Tarazona, P., "Solid-fluid transition and interfaces with density functional approaches", Surface Science, 331, 989-994, (1995).

    Thommes, M., Kaneko, K., Neimark Alexander, V., Olivier James, P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing Kenneth, S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87, 1051, (2015).

    Welgemoed, T. J. and Schutte, C. F., "Capacitive Deionization Technology™: An alternative desalination solution", Desalination, 183, 327-340, (2005).

    Xu, P., Drewes, J. E., Heil, D. and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Research, 42, 2605-2617, (2008).

    Zou, L., Morris, G. and Qi, D., "Using activated carbon electrode in electrosorptive deionisation of brackish water", Desalination, 225, 329-340, (2008).

    QR CODE
    :::