跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俊豪
Jun-Hao Chen
論文名稱: 使用透明顯示器之虛實整合環境於合作科學探究學習之影響
The affordance of using cyber-physical system with a transparent screen in collaborative science inquiry
指導教授: 劉晨鐘
Chen-Chung Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 132
中文關鍵詞: 科學探究合作學習透明顯示器擴增實境虛實整合
外文關鍵詞: Science inquiry, Collaborative learning, Transparent screen, Augmented Reality, Cyber-Physical System
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,擴增實境已被廣泛應用於各個領域,其疊合虛擬資訊至真實世界特性加上 硬體進步和開發支援,擴增實境作為一有潛力應用於教育上之新興技術,此外,科學探 究被發現能增進學生科學學習之效益,且擴增實境亦能在探究活動中帶來益處。因此, 本研究設計一套以透明顯示器作為擴增實境之載具虛實整合合作環境,並以光學成像性 質作為主題進行合作探究學習活動,招募十二位光學概念先備知識的國中七年級學生, 將他們分為六組,每組二人。其中三組作為實驗組,另外三組則為使用傳統儀器之控制 組。並收集其活動中之錄影、錄音、光學概念試卷及感受量表問卷,分析學生之學習成 效、探究對話及視線焦點以及整體實驗之感受。為了更進一步理解實驗環境與學生探究 學習行為之關聯,將學生對話及視線進行分類並分析其對話內容及學生於活動中行為, 擷取實驗組與控制組發生之共同事件以探討學習環境對於學生學習活動之影響。結果顯 示,實驗組學習成效略優於實驗組,但兩者並無顯著差距,在探究討論方面,發現實驗 組設置能夠促進學生進行參照行為產生多於控制組之探究對話,更能夠促進學生產生共 同視線焦點,降低討論之困難,更進一步發現實驗組學生整體實驗感受皆優於控制組, 然而,實驗組也發現存在資訊解讀之限制。最後,根據研究結果所發現之限制,提出對 於未來教師應用此環境之建議、實驗設計者之實驗設計改善建議以及系統設計師能夠進 一步優化的地方。


    In recent years, augmented reality (AR) has been implemented in various fields. AR is a promising technology for educational purposes because of its feature of integrating virtual and physical information in the real world. Additionally, scientific inquiry has been found to enhance students' learning outcome, and AR can also bring benefits to inquiry-based activities. Therefore, this study designs an integrated collaborative environment using a transparent screen as a device for AR, focusing on the topic of optical imaging for collaborative inquiry learning activities. Twelve seventh-grade students with no prior knowledge to optical concepts are divided into six groups, with two students in each group. Three groups as the experimental group, while the other three groups as the control group using traditional equipment. Video and audio recordings, optical concept tests, and perception questionnaires are collected during their activities. The collected data is analyzed to assess students' learning outcome, cognitive dialogues, gaze focus, and experiences of the experiment. To further understand the relationship between the experimental environment and students' inquiry learning behaviors, student dialogues and gazes are classified and analyzed for their content and behavioral patterns during the activities. Common events occurring in both the experimental and control groups are extracted to investigate the impact of the learning environment on students' learning activities. The results show that the experimental group performs slightly better than the control group in terms of learning outcome, but the difference is not significant. Regarding inquiry discussions, the experimental group shows more inquiry dialogues and shared gaze focus compared to the control group, thereby reducing difficulties in discussions. Furthermore, the experimental group reports better experiment experiences than the control group. However, limitations in information interpretation are also shown in the experimental group. Finally, based on the limitations are shown from the research findings, suggestions are proposed for future teachers' applications of this environment, improvements for experimental design by experimenters, and areas where system designers can further optimize the technology.

    摘要 I ABSTRACT II 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 2 1.3 名詞解釋 3 1.3.1 擴增實境 (Augmented Reality) 3 1.3.2 科學探究 (Science Inquiry) 3 1.3.3 虛實整合系統 (Cyber-Physical System) 3 1.4 論文架構 4 第二章 文獻探討 5 2.1 科學探究討論 5 2.2 擴增實境 6 第三章 系統設計 9 3.1 系統特色 9 3.2 系統介紹 10 3.2.1 CoSci物理模擬網站 11 3.2.2 YoLo物件辨識程式 13 3.2.3 實體光學儀器 16 3.3 系統架構 17 第四章 研究方法 19 4.1 研究流程 19 4.2 研究對象 21 4.3 實驗設計 22 4.4 研究工具 24 4.4.1 前、後測光學概念試卷 24 4.4.2 光學學習單 25 4.4.3 光學實驗感受量表 25 4.5資料蒐集與分析 25 4.5.1 學習成效 26 4.5.2 探究對話及視線焦點 27 4.5.3 實驗感受量表分析 32 第五章 結果與討論 33 5.1 光學概念學習成效 33 5.1.1 光學基本概念題分析 33 5.1.2 光學情境應用題分析 35 5.2 討論對話內容時長分析 37 5.2.1 實驗組對比控制組探究對話時間分析 37 5.2.2 實驗組對比控制組視線焦點時間分析 42 5.3 討論互動與專視線注焦點關聯圖分析 47 5.3.1 實驗組探究對話與視線焦點分析圖 47 5.3.2 控制組探究對話與視線焦點分析圖 52 5.3.3 實驗組對控制組行為模式比較 56 5.4 對話情節 58 5.4.1 學生探究對話之臆測類型 58 5.4.2對話情節案例 60 對話情節(episode) – 傳統實驗設置之限制 60 對話情節(episode) – 參照整合資訊促進探究對話 67 對話情節(episode) – 臆測內容類型影響 75 對話情節(episode) – 透明顯示器促進產生擴增資訊之共同視線焦點 84 5.5 感受量表分析 88 第六章 結論與未來建議 91 6.1 結論 91 6.2 未來建議 93 參考文獻 95 附錄 A 光學概念前測試卷 101 附錄 B 光學概念後測試卷 103 附錄 C 光學探究學習單 108 附錄 D 光學實驗感受量表 116

    Arici, F., & Yilmaz, M. (2023). An examination of the effectiveness of problem‐based learning method supported by augmented reality in science education. Journal of Computer Assisted Learning, 39(2), 446-476.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), 355-385.
    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.
    Billinghurst, M., & Duenser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63.
    Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
    Boletsis, C., & McCallum, S. (2013). The table mystery: An augmented reality collaborative game for chemistry education. In Serious Games Development and Applications: 4th International Conference, SGDA 2013, Trondheim, Norway, September 25-27, 2013. Proceedings 4 (pp. 86-95). Springer Berlin Heidelberg.
    Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
    Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29(4), 856-865.
    Chang, C. J., Liu, C. C., Wu, Y. T., Chang, M. H., Chiang, S. F., Chiu, B. C., ... & Chang, C. K. (2016). Students' perceptions on problem solving with collaborative computer simulation. In 24th International Conference on Computers in Education, ICCE 2016 (pp. 166-168). Asia-Pacific Society for Computers in Education.
    Cheng, J. C., Chen, K., & Chen, W. (2017, July). Comparison of marker-based AR and markerless AR: A case study on indoor decoration system. In Lean and Computing in Construction Congress (LC3): Proceedings of the Joint Conference on Computing in Construction (JC3) (pp. 483-490).
    Dey, N., Ashour, A. S., Shi, F., Fong, S. J., & Tavares, J. M. R. (2018). Medical cyber-physical systems: A survey. Journal of medical systems, 42, 1-13.
    Erickson, A., Norouzi, N., Kim, K., Schubert, R., Jules, J., LaViola Jr, J. J., ... & Welch, G. F. (2020). Sharing gaze rays for visual target identification tasks in collaborative augmented reality. Journal on Multimodal User Interfaces, 14(4), 353-371.
    Ernst, D. C., Hodge, A., & Yoshinobu, S. (2017). What is inquiry-based learning. Notices of the AMS, 64(6), 570-574.
    Espinoza, F. (2020). Impact of guided inquiry with simulations on knowledge of electricity and wave phenomena. arXiv preprint arXiv:2012.05826.
    Fida, B., Cutolo, F., di Franco, G., Ferrari, M., & Ferrari, V. (2018). Augmented reality in open surgery. Updates in surgery, 70(3), 389-400.
    Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635.
    Gillies, R. M., Nichols, K., & Khan, A. (2015). The effects of scientific representations on primary students’ development of scientific discourse and conceptual understandings during cooperative contemporary inquiry-science. Cambridge Journal of Education, 45(4), 427-449.
    Gillies, R. M., Nichols, K., Burgh, G., & Haynes, M. (2014). Primary students’ scientific reasoning and discourse during cooperative inquiry-based science activities. International Journal of Educational Research, 63, 127-140.
    Goff, E. E., Mulvey, K. L., Irvin, M. J., & Hartstone-Rose, A. (2018). Applications of augmented reality in informal science learning sites: A review. Journal of Science Education and Technology, 27, 433-447.
    Gun, E., & Atasoy, B. (2017). The effects of augmented reality on elementary school students' spatial ability and academic achievement. EGITIM VE BILIM-EDUCATION AND SCIENCE, 42(191).
    Hackling, M. W., Smith, P., & Murcia, K. (2010). Talking Science: Developing a discourse of inquiry. Teaching Science, 56(1), 17-22.
    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    Kaufmann, H., & Schmalstieg, D. (2002, July). Mathematics and geometry education with collaborative augmented reality. In ACM SIGGRAPH 2002 conference abstracts and applications (pp. 37-41).
    Kim, M., & Tan, H. T. (2013). A collaborative problem-solving process through environmental field studies. International Journal of Science Education, 35(3), 357-387.
    Korganci, N., Miron, C., Dafinei, A., & Antohe, S. (2015). The importance of inquiry-based learning on electric circuit models for conceptual understanding. Procedia-Social and Behavioral Sciences, 191, 2463-2468.
    Laine, T. H., Nygren, E., Dirin, A., & Suk, H. J. (2016). Science Spots AR: a platform for science learning games with augmented reality. Educational Technology Research and Development, 64, 507-531.
    Li, N., Gu, Y. X., Chang, L., & Duh, H. B. L. (2011, July). Influences of AR-supported simulation on learning effectiveness in face-to-face collaborative learning for physics. In 2011 IEEE 11th International Conference on Advanced Learning Technologies (pp. 320-322). IEEE.
    Lin, H. C. K., Hsieh, M. C., Wang, C. H., Sie, Z. Y., & Chang, S. H. (2011). Establishment and Usability Evaluation of an Interactive AR Learning System on Conservation of Fish. Turkish Online Journal of Educational Technology-TOJET, 10(4), 181-187.
    Marino, E., Barbieri, L., Colacino, B., Fleri, A. K., & Bruno, F. (2021). An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Computers in Industry, 127, 103412.
    Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. Applied computational science, 20, 205-214.
    Moon, A., Stanford, C., Cole, R., & Towns, M. (2017). Decentering: A characteristic of effective student–student discourse in inquiry-oriented physical chemistry classrooms. Journal of Chemical Education, 94(7), 829-836.
    National Research Council. (1996). National science education standards. National Academies Press.
    Nelson, B. C., & Ketelhut, D. J. (2007). Scientific inquiry in educational multi-user virtual environments. Educational Psychology Review, 19(3), 265-283.
    Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21, 133-147.
    Radu, I., & Schneider, B. (2022). How Augmented Reality (AR) Can Help and Hinder Collaborative Learning: A Study of AR in Electromagnetism Education. IEEE Transactions on Visualization and Computer Graphics.
    Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. The journal of the learning sciences, 2(3), 235-276.
    Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science education, 92(3), 499-525.
    Samarapungavan, A. L. A., Mantzicopoulos, P., & Patrick, H. (2008). Learning science through inquiry in kindergarten. Science Education, 92(5), 868-908.
    Sırakaya, M., & Alsancak Sırakaya, D. (2022). Augmented reality in STEM education: A systematic review. Interactive Learning Environments, 30(8), 1556-1569.
    Smart, J. B., & Marshall, J. C. (2013). Interactions between classroom discourse, teacher questioning, and student cognitive engagement in middle school science. Journal of Science Teacher Education, 24(2), 249-267.
    Thomas, P. C., & David, W. M. (1992, January). Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Hawaii international conference on system sciences (Vol. 2). ACM SIGCHI Bulletin.
    van der Stappen, A., Liu, Y., Xu, J., Yu, X., Li, J., & Van Der Spek, E. D. (2019, October). MathBuilder: A collaborative AR math game for elementary school students. In Extended Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts (pp. 731-738).
    Van Hook, S. J., & Huziak-Clark, T. L. (2008). Lift, squeeze, stretch, and twist: Research-based Inquiry Physics Experiences (RIPE) of energy for kindergartners. Journal of Elementary Science Education, 20(3), 1-16.
    Wang, Y. H. (2017). Using augmented reality to support a software editing course for college students. Journal of Computer Assisted Learning, 33(5), 532-546.
    Wang, Y. H. (2020). Integrating games, e-books and AR techniques to support project-based science learning. Educational Technology & Society, 23(3), 53-67.
    Yang, Y., Cai, S., Wen, Y., Li, J., & Jiao, X. (2021). AR Learning Environment Integrated with EIA Inquiry Model: Enhancing Scientific Literacy and Reducing Cognitive Load of Students. Sustainability, 13(22), 12787.
    Yun, S. T., Olsen, S. K., Quigley, K. C., Cannady, M. A., & Hartry, A. (2022). A Review of Augmented Reality for Informal Science Learning: Supporting Design of Intergenerational Group Learning. Visitor Studies, 1-23.
    Zhang, W., & Wang, Z. (2021). Theory and practice of VR/AR in K-12 science education—a systematic review. Sustainability, 13(22), 12646.

    QR CODE
    :::