| 研究生: |
陳昭耿 Chao-Keng Chen |
|---|---|
| 論文名稱: |
磁場誘導混合基質膜聚合物基質排序以增強氣體傳輸性能 Magnetic field-induced alignment of polymer matrix in mixed matrix membranes for enhanced gas transport performance |
| 指導教授: |
張博凱
Bor Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 全球暖化 、氣體分離 、混合基質薄膜 、磁場 |
| 外文關鍵詞: | Global warming, gas separation, mixed matrix membrane, magnetic field |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的幾十年裡,地球的溫度越來越高,如何減緩全球變暖的方法變得至關重要。 氣體分離是一個具有巨大發展潛力的新興領域。 模分離技術是一個造價相對低廉且不複雜的工藝。如何在提升氣體滲度率的同時提升氣體分離效率成了一個重要的議題。混合基質膜(mixed matrix membranes)能在不提高成本的情況下 ,提高膜的分離效率。
磁場是一種超距力,可以在不直接接觸的情況下作用於帶電粒子。 在有限的距離內,磁場可以產生相對均勻的力場,從而實現材料的有效排列。 在這項研究中,芳香族聚合物在磁場下排列的獨特特性被用來提高聚苯並咪唑 (polybenzimidazole, PBI) 膜及其 MMM 的性能。在成膜過程中,施加磁場以重新排列 PBI 及其 MMM,從而提高性能。 在純膜階段,磁場增加了膜的表面粗糙度,同時實現了更均勻和缺陷減少的結構,從而提高了氣體滲透性和選擇性。 在 MMM 階段,由於磁場,PBI 的有效對齊促進了二氧化矽的 -OH 基團和 PBI 的 -NH 基團之間形成氫鍵,從而使二氧化矽在膜內分佈更均勻,不受重力的影響而均勻分布在PBI中。
本研究證明了磁場的應用如何有效地提高芳香族聚合物在膜製造中的性能,從而改善氣體分離性能。 通過利用磁場的排列能力,這種方法為開發具有增強氣體滲透性和選擇性的分離膜提供了新的可能性。
In recent decades, as the global temperature has risen, the problem of global warming has become increasingly urgent. Gas separation is a promising field for mitigating this issue. Membrane separation technology offers a cost-effective and simple process. However, improving gas permeability and selectivity has become a critical challenge. Mixed matrix membranes (MMMs) provide a solution by increasing separation efficiency.
Magnetic field, a long-range force, can affect charged particles without direct contact. Magnetic fields enable efficient material alignment by creating a uniform force field over a limited range. This research utilizes the unique property of aromatic polymers to ignite under a magnetic field to enhance the performance of polybenzimidazole (PBI) and their MMMs. During membrane formation, the magnetic field aligned the PBI and its MMMs, resulting in improved performance. At the pure-membrane stage, the magnetic field increases surface roughness, promoting a more uniform and defect-reduced structure, which enhanced gas permeability and selectivity. In the MMM stage, the effective alignment of PBI promotes the hydrogen bonding between the silica's -OH groups and PBI's -NH groups, leading to a more even distribution of silica within the membrane, unaffected by the gravity, and uniformly dispersed in PBI.
This study demonstrates that magnetic fields can effectively enhance the performance of aromatic polymers in membrane fabrication for improved gas separation capabilities. By exploiting magnetic alignment, this approach opens up the possibility to develop advanced membranes with enhanced gas permeability and selectivity.
References
1. Lashof, D.A. and Ahuja, D.R., "Relative contributions of greenhouse gas emissions to global warming", Nature, 344(6266), 529-531, 1990.
2. Riasat Harami, H., et al., "Magnetic nanoFe2O3–incorporated PEBA membranes for CO2/CH4 and CO2/N2 separation: Experimental study and grand canonical Monte Carlo and molecular dynamics simulations", Greenhouse Gases: Science and Technology, 9(2), 306-330, 2019.
3. Ma, L., et al., "Engineering of the filler/polymer interface in metal–organic framework‐based mixed‐matrix membranes to enhance gas separation", Chemistry–An Asian Journal, 14(20), 3502-3514, 2019.
4. Qiao, Z., et al., "A highly permeable aligned montmorillonite mixed‐matrix membrane for CO2 separation", Angewandte Chemie, 128(32), 9467-9471, 2016.
5. Wang, J., et al., "A Highly Permeable Mixed Matrix Membrane Containing a Vertically Aligned Metal–Organic Framework for CO2 Separation", ACS Applied Materials & Interfaces, 13(42), 50441-50450, 2021.
6. Cheng, F., et al., "Magnetic control of MOF crystal orientation and alignment", Chemistry–A European Journal, 23(62), 15578-15582, 2017.
7. Zhu, W., et al., "Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation", Journal of energy chemistry, 31, 1-10, 2019.
8. van Essen, M., et al., "Magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 in matrimid mixed matrix membranes for enhanced CO2 permeability", Membranes, 10(7), 155, 2020.
9. Garrido, L., "Magnetic orientation of diamagnetic amorphous polymers", Journal of Polymer Science Part B: Polymer Physics, 48(10), 1009-1015, 2010.
10. Sean, N.A., et al., "Magnetic field‐induced alignment of polybenzimidazole microstructures to enhance proton conduction", Journal of the Chinese Chemical Society, 68(1), 86-94, 2021.
11. Gopinadhan, M., et al., "Controlling orientational order in block copolymers using low-intensity magnetic fields", Proceedings of the National Academy of Sciences, 114(45), E9437-E9444, 2017.
12. Vinothkannan, M. and Kim, A., "Gnana kumar, G.; Yoon, J.-M.; Yoo, DJ Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe 3 O 4-FGO) membrane for application in high temperature and low humidity fuel cells", RSC Adv, 7(62), 39034-39048, 2017.
13. Jiang, X., et al., "Development of an open 0.3 T NdFeB MRI magnet", IEEE transactions on applied superconductivity, 14(2), 1621-1623, 2004.
14. Koros, W.J. and Fleming, G., "Membrane-based gas separation", Journal of membrane science, 83(1), 1-80, 1993.
15. Chung, T.-S., et al., "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Progress in polymer science, 32(4), 483-507, 2007.
16. Robeson, L.M., "Correlation of separation factor versus permeability for polymeric membranes", Journal of membrane science, 62(2), 165-185, 1991.
17. Koros, W.J., "Simplified analysis of gas/polymer selective solubility behavior", Journal of Polymer Science: Polymer Physics Edition, 23(8), 1611-1628, 1985.
18. Chern, R., et al. Material Science Aspects of Synthetic Membranes, Am. in Chem. Soc. Symp. Ser., to appear. 1984.
19. McCaig, M. and Paul, D., "Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films", Polymer, 40(26), 7209-7225, 1999.
20. Bos, A., et al., "Suppression of gas separation membrane plasticization by homogeneous polymer blending", AIChE Journal, 47(5), 1088-1093, 2001.
21. Tin, P., et al., "Effects of cross-linking modification on gas separation performance of Matrimid membranes", Journal of Membrane Science, 225(1-2), 77-90, 2003.
22. Robeson, L.M., "The upper bound revisited", Journal of membrane science, 320(1-2), 390-400, 2008.
23. Robeson, L., et al., "An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis", Journal of Membrane Science, 341(1-2), 178-185, 2009.
24. Freeman, B.D., "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32(2), 375-380, 1999.
25. Lin, R., et al., "Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces", Journal of Materials Chemistry A, 6(2), 293-312, 2018.
26. Goh, P., et al., "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Separation and Purification Technology, 81(3), 243-264, 2011.
27. Jadav, G.L. and Singh, P.S., "Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties", Journal of Membrane Science, 328(1-2), 257-267, 2009.
28. Aroon, M., et al., "Performance studies of mixed matrix membranes for gas separation: A review", Separation and purification Technology, 75(3), 229-242, 2010.
29. Li, Y., et al., "Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes", Journal of Membrane Science, 275(1-2), 17-28, 2006.
30. Kim, S., et al., "Poly (imide siloxane) and carbon nanotube mixed matrix membranes for gas separation", Desalination, 192(1-3), 330-339, 2006.
31. Yong, H.H., et al., "Zeolite-filled polyimide membrane containing 2, 4, 6-triaminopyrimidine", Journal of Membrane Science, 188(2), 151-163, 2001.
32. Joly, C., et al., "Sol-gel polyimide-silica composite membrane: gas transport properties", Journal of Membrane Science, 130(1-2), 63-74, 1997.
33. Ahn, J., et al., "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", Journal of Membrane science, 314(1-2), 123-133, 2008.
34. Sadeghi, M., et al., "Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles", Journal of Membrane Science, 331(1-2), 21-30, 2009.
35. Musto, P., et al., "Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend", Polymer, 34(14), 2934-2945, 1993.
36. Musto, P., et al., "Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes", Polymer, 30(6), 1012-1021, 1989.
37. D'Antò, V., et al., "Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy", The Angle Orthodontist, 82(5), 922-928, 2012.
38. Sanaeepur, H., et al., "A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-block-amide)(Pebax 1657)/copper nanoparticles for CO2 separation", Journal of Membrane Science, 573, 234-246, 2019.
39. Mahmoudi, A., et al., "CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane", Journal of Industrial and Engineering Chemistry, 23, 238-242, 2015.
40. Kim, H., et al., "PDMS–silica composite membranes with silane coupling for propylene separation", Journal of Membrane Science, 344(1-2), 211-218, 2009.
41. Pak, C.-g., Polymer Batteries and Fuel Cells: Selection of Papers from the 1st International Conference PBFC-1, 1-6 June 2003, Jeju Island, Korea. 2004: Pergamon Press.
42. Kulkarni, M., et al., "Synthesis and characterization of novel polybenzimidazoles bearing pendant phenoxyamine groups", Journal of Polymer Science Part A: Polymer Chemistry, 46(17), 5776-5793, 2008.
43. Elashmawi, I., "Effect of LiCl filler on the structure and morphology of PVDF films", Materials Chemistry and Physics, 107(1), 96-100, 2008.
44. Pérez-Francisco, J.M., et al., "CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance", Journal of Membrane Science, 597, 2020.
45. Giel, V., et al., "Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes", Nanoscale Res Lett, 12(1), 3, 2017.
46. Panapitiya, N.P., et al., "Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules", ACS Appl Mater Interfaces, 7(33), 18618-18627, 2015.
47. Li, X., et al., "Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures", Journal of Membrane Science, 461, 59-68, 2014.
48. Zhu, L., et al., "Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2separation", Journal of Materials Chemistry A, 5(37), 19914-19923, 2017.
49. Giel, V., et al., "Gas transport properties of novel mixed matrix membranes made of titanate nanotubes and PBI or PPO", Desalination and Water Treatment, 1-9, 2014.
50. Giel, V., et al., "Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties", Journal of Membrane Science, 537, 315-322, 2017.
51. Hosseini, S.S., et al., "Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process", Separation and Purification Technology, 122, 278-289, 2014.
52. Stevens, K.A., et al., "Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles", Journal of Membrane Science, 593, 2020.
53. Ringwald, S.C. and Pemberton, J.E., "Adsorption interactions of aromatics and heteroaromatics with hydrated and dehydrated silica surfaces by Raman and FTIR spectroscopies", Environmental science & technology, 34(2), 259-265, 2000.
54. Hair, M.L., "Hydroxyl groups on silica surface", Journal of Non-Crystalline Solids, 19, 299-309, 1975.
55. Moore, T.T. and Koros, W.J., "Non-ideal effects in organic–inorganic materials for gas separation membranes", Journal of Molecular Structure, 739(1-3), 87-98, 2005.
56. Mahajan, R., et al., "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", Journal of Applied Polymer Science, 86(4), 881-890, 2002.
57. Perez, E.V., et al., "Mixed-matrix membranes containing MOF-5 for gas separations", Journal of Membrane Science, 328(1-2), 165-173, 2009.
58. Zhang, M.Q., et al., "Mechanical properties of low nano‐silica filled high density polyethylene composites", Polymer Engineering & Science, 43(2), 490-500, 2003.
59. Rong, M.Z., et al., "Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites", Polymer, 42(1), 167-183, 2001.