| 研究生: |
周郁舜 Yu-shun Chou |
|---|---|
| 論文名稱: |
濃度梯度微晶片製作分析及細胞運動檢測應用 Microfluidic chemotaxis device for measuring the cell migration of the placenta-derived multipotent cells |
| 指導教授: |
鍾志昂
Chin-ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 微流體晶片 、人類胎盤源多功能幹細胞 、第一型膠原蛋白 、濃度梯度分佈 、化學趨向性 |
| 外文關鍵詞: | microfluidic device, placenta-derived multipotent cell, type I collagen, concentration gradient, chemotaxis |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於微流體晶片具有降低成本、提升分析效率與可進行即時觀察等優點,對於生醫科技來說擁有相當大的發展潛力,因此近年來許多學者將微流體裝置應用到生醫領域方面的研究。本文設計製作一個微流體裝置,讓人類胎盤源多功能幹細胞在其系統區域內進行正常的生長與運動,而且此微流體晶片可以產生類似線性分佈的濃度梯度。此外藉由實驗來觀察人類胎盤源多功能幹細胞於第一型膠原蛋白濃度梯度分佈下其運動之行為,且膠原蛋白濃度梯度的初始範圍為0-3μM,根據實驗結果顯示在注入流率為1 μL/min下,人類胎盤源多功能幹細胞無法進行正常的生長與運動,至於注入流率為0.05 μL/min時,人類胎盤源多功能幹細胞能夠正常的生長並進行遷移的行為,但是並沒有明顯的化學趨向性反應。
Recently, microfluidic device has been applied to the biological and medical fields because of its huge potential for high throughput screening and advantages such as experiment cost down, increasing analysis efficiency and real time observation.This study aimed to create a microfluidic concentration generator for measuring the chemotactic migration of the placenta- derived multipotent cells (PDMCs) responding to type I collagen. The microfluidic device could generate linear-like concentration gradients by using cascade branches of micro-channels.
The collagen solution was pumped in concentration generator at two flow rates of 1 μL/min and 0.05 μL/min respectively to establish the type I collagen gradients. The type I collagen concentration gradient ranged between 0 and 3.03 μM. According to the experimental results, the PDMCs scarcely migrated and were washed off by the flow at 1 μL/min. The PDMCs showed random walks when the flow rate was 0.05 μL/min. However, the PDMCs showed no directional migration in response to the collagen gradient. This might be because the concentration of 3μM had saturated the chemotactic behavior of the cells.
Ananthakrishnan, R., and Ehrlicher, A., 2007. The forces behind cell movement. International Journal of Biological Sciences 3(5), 303 - 317.
Becker, H., and Gärtner, C., 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 390(1), 89 - 111.
Behar, T.N., Schaffner, A.E., Colton, C.A., Somogyi, R., Olah, Z., Lehel, C., and Barker, J.L., 1994. GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. The Journal of Neuroscience 14(1), 29 - 38.
Brehm, W., Burk, J., Delling, U., Gittel, C., and Ribitsch, I., 2012. Stem cell-based tissue engineering in veterinary orthopaedics. Cell Tissue Res. 347, 677 - 688.
Brignier, A.C., and Gewirtz, A.M., 2010. Embryonic and adult stem cell therapy. Journal of Allergy and Clinical Immunology 125(2), 336 - 344.
Carter, S.B., 1965. Principles of Cell Motility: The Direction of Cell Movement and Cancer Invasion. Nature 208, 1183 - 1187.
Cimetta, E., Cannizzaro, C., James, R.,Biechele, T., Moon, R.T., Elvassore, N., and Vunjak-Novakovic, G., 2010. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab on a Chip 10(23), 3277 - 3283.
Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., and Whitesides, G.M., 2001. Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry 73(6), 1240 - 1246.
Faley, S.L., Copland, M., Wlodkowic, D., Kolch, W., Seale, K.T., Wikswo, J.P., and Cooper, J.M., 2009. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient- derived hematopoietic stem cells. Lab on a Chip 9, 2659 - 2664.
Figallo, E., Cannizzaro, C., Gerecht, S., Burdick, J.A., Langer, R., Elvassore, N., and Vunjak-Novakovic, G., 2007. Micro-bioreactor array for controlling cellular microenvironments. Lab on a Chip 7(6), 710 - 719.
Gelman, R.A., and Piez, K.A., 1980. Collagen fibril formation in vitro. The Journal of Biological chemistry 255(17), 8098 - 8102.
Jeon, N.L., Baskaran, H., Dertinger, S.K.W., Whitesides, G.M., Van de Water, L., and Toner, M., 2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnology 20(8), 826 - 830.
Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., and Whitesides, G.M., 2000. Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22), 8311 - 8316.
Jeong, O.C., Park, S.W., Yang, S.S., and Pak, J.J., 2005. Fabrication of a peristaltic PDMS micropump. Sensors and Actuators A 123 - 124, 453 - 458.
Kim, S., Kim, H.J., and Jeon, N.L., 2010. Biological applications of microfluidic gradient devices. Integrative Biology 2(11-12), 584 - 603.
Langer, R., and Vacanti, J.P., 1993. Tissue Engineering. Science 26, 920 - 926.
Lauffenburger, D.A., and Horwitz, A.F., 1996. Cell migration: A physically integrated molecular process. Cell 84(3), 359 - 369.
Lee, D., and Chen Y.T., 2011. Mixing in tangentially crossing microchannels. American Institute of Chemical Engineers Journal 57(3), 571 - 580.
Lee, J. N., Jiang, X., Ryan, D., and Whitesides, G.M., 2004. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20(26), 11684 - 11691.
Lin, F., and Butcher, E.C., 2006. T cell chemotaxis in a simple microfluidic device. Lab on a Chip 6(11), 1462 - 1469.
Lin, F., Nguyen, C.M., Wang, S.J., Saadi, W., Gross, S.P., and Jeon N.L., 2004. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochemical and Biophysical Research Communications 319(2), 576 - 581.
Lin, F., Nguyen, C.M., Wang, S.J., Saadi, W., Gross, S.P., and Jeon N.L., 2005. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Annals of Biomedical Engineering 33(4), 475 - 482.
Liu, Y., Sai, J., Richmond, A., and Wikswo, J.P., 2008. Microfluidic switching system for analyzing chemotaxis responses of wortmannin- inhibited HL-60 cells. Biomed Microdevices 10(4), 499 - 507.
McCarthy, J.B., Palm, S.L., and Furcht, L.T., 1983. Migration by haptotaxis of a schwann cell tumor line to the basement membrane glycoprotein laminin. The Journal of Cell Biology 97, 772 - 777.
Mengeaud, V., Josserand, J., and Girault, H.H., 2002. Mixing processes in a zigzag microchannel: Finite element simulations and optical study. Analytical Chemistry 74(16), 4279 - 4286.
Mosadegh, B., Saadi, W., Wang, S.J., and Jeon, N.L., 2008. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnology and Bioengineering 100(6), 1205 - 1213.
Nguyen, T.T., Pham, M., and Goo, N.S., 2008. Development of a peristaltic micropump for bio-medical applications based on mini LIPCA. Journal of Bionic Engineering 5(2), 135 - 141.
Okada, S., Ishii, K., Yamane, J., Iwanami, A., Ikegami, T., Katoh, H., Iwamoto, Y., Nakamura, M., Miyoshi, H., Okano, H.J., Contag, C.H., Toyama, Y., and Okano, H., 2005. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB Journal 19(13), 1839 -1841.
Oster, G.F., Murray, J.D., and Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. exp. Morph. 78, 83 - 125.
Pamme, N., Eijkel, J.C.T., Manz, A., 2006. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. Journal of Magnetism and Magnetic Materials 307(2), 237 - 244.
Randall, G.C., and Doyle, P.S., 2005. Permeation-driven flow in poly (dimethylsiloxane) microfluidic devices. Proceedings of the National Academy of Sciences of the United States of America 102(31), 10813 - 10818.
Saxena, A.K., 2005. Tissue engineering: Present concepts and strategies. Journal of Indian Association of Pediatric Surgeons 10(1), 14 - 19.
Tabata, Y., 2005. Significance of release technology in tissue engineering. Drug Discovery Today 10(23-24), 1639 - 1646.
Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J., and Nealey, P.F., 2003. Epithelial contact guidance on well-defined micro- and nanostructured substrates. Journal of Cell Science 116(10), 1881 - 1892.
Thibault, M.M., Hoemann, C.D., and Buschmann, M.D., 2007. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells and Development 16 (3), 489 - 502.
Titmarsh, D., Hidalgo, A., Turner, J., Wolvetang, E., and Cooper-White, J., 2011. Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnology and Bioengineering 108(12), 2894 - 2904.
Tsai, T.H., Liou, D.S., Kuo, L.S., and Chen, P.H., 2009. Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sensors and Actuators A 153(2), 267 - 273.
Wahl, S.M., Hunt, D.A., Wakefield, L.M., McCartney-Francis, N., Wahl, L.M., Roberts, A.B., and Sporn, M.B., 1987. Transforming growth factor type β induces monocyte chemotaxis and growth factor production. Proceedings of the National Academy of Sciences of the United States of America 84(16), 5788 - 5792.
Wallace, D.G., and Rosenblatt, J., 2003. Collagen gel systems for sustained delivery and tissue engineering. Advanced Drug Delivery Reviews 55(12), 1631 - 1649.
Wang, S. J., Saadi, W., Lin, F., Nguyen, C.M., and Jeon, N.L., 2004. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Experimental Cell Research 300(1), 180 - 189.
Webb, S.E., Pollard, J.W., and Jones, G.E., 1996. Direct observation and quantification of macrophage chemoattraction to the growth factor CSF-1. Journal of Cell Science 109, 793 - 803.
Weibel, D.B., Garstecki, P., and Whitesides, G.M., 2005. Combining microscience and neurobiology. Current Opinion in Neurobiology 15(5), 560 - 567.
Whitesides, G.M., and Stroock, A.D., 2001. Flexible methods for microfluidics. Physics Today 54(6), 42 - 48.
Willson Research Group, 2002. Post-Exposure Bake. http://willson.cm. utexas.edu/Research/Sub_Files/Resist_Modeling/peb.htm
Wu, H.Y., and Liu, C.H., 2005. A novel electrokinetic micromixer. Sensors and Actuators A 118(1), 107 - 115.
Xia, Y., and Whitesides, G.M., 1998. Soft Lithography. Angew. Chem. Int. Ed. 37, 550 - 575.
Yen, B.L., Huang, H.I., Chien, C.C., Jui, H.Y., Ko, B.S., Yao, M., Shun, C.T., Yen, M.L., Lee, M.C., and Chen, Y.C., 2005. Isolation of multipotent cells from human term placenta. Stem Cells 23(1), 3 - 9.
Zigmond, S.H., 1977. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. The Journal of Cell Biology 75 (2), 606 - 616.
陳誌遠,2012。利用博登量測器分析人類胎盤源多功能幹細胞的化學趨向行為。中央大學機械工程研究所,博士論文。
梅(May, Gary S.)著,林鴻志 譯,2008。半導體製程概論。交大出版社。
黃蓉芬與楊燕枝,2003。微機電製程技術應用於生醫領域之研究。工業技術研究院 產業經濟與資訊服務中心。
伍秀菁,汪若文,林美吟 編輯,2009。微機電系統技術與應用。財團法人國家實驗研究院儀器科技研究中心。
行政院衛生署,2012。民國100年死因統計結果分析。行政院衛生署。