跳到主要內容

簡易檢索 / 詳目顯示

研究生: 巫瑞永
JUI-YUNG WU
論文名稱: 互動雙足式機器人之設計與實現(II)雙足式機器人控制
The design and realization of interactive biped robots(II)basic motions'' control of biped robots
指導教授: 王文俊
Wen-June Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 機器人雙足互動式
外文關鍵詞: interactive, biped robot
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究「互動雙足式機器人之設計與實現」是由三位同學合力完成,共分為(A)手勢辨識、(B)雙足式機器人控制以及(C)互動演算法執行三個部分,而本論文是針對(B)項目做研究。
    本論文乃是設計控制方法控制一對雙足式機器人,使它們能夠平順的執行前進、後退、平移、原地轉圈、蹲下、站起、鞠躬、伏地挺身等基本動作,最終將應用到兩機器人的互動合作表演中,使其能順利完成任務。基本動作的控制法則包含了扭力控制、線性內插平滑化、延遲時間控制、鏡射等方法;另外,為了達成兩機器人能合作搬運物體,本論文再開發機器人的夾取控制方法,讀取並分析馬達的回傳資訊,使雙手能夠有效夾緊不同寬度的物體,順利在互動表演中傳遞。總而言之,以多樣式混合控制方法,提高機器人的穩定度,完成個體機器人基本動作,並協助兩機器人在互動表演中成功演出,是本論文的最主要目標。


    The study work “The design and realization of interactive biped robots” was completed by three members. Three members accomplish the following three tasks, respectively, (A) gesture recognition, (B) basic motions’ control of biped robots, and (C) execution of interactive algorithm for two robots. This thesis focuses on the part (B) basic motions’ control of biped robots.
    The goal of this thesis is to design control techniques to control a pair of biped robots such that they can achieve the following basic motions, walk forward and backward smoothly, shift right and left, turn right and left, squat down and stand up, bow and push-up. Finally, these motions will be applied to the interaction between two robots. The control techniques for those basic motions contain “torque control”, “linear interpolation”, “delay-time control”, and “mirror projection” etc. Furthermore, in order to carry the object successfully, we also design a control strategy such that the robot can clip the object. In the clipping motion control, the robot can read and analyze the feedback information from the actuators of arms, and then clip the object tightly; even the width of the object is not measured in advance. In a conclusion, this thesis accomplishes the basic motions’ control of a robot and applies the control to the object transportation between two robots successfully.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3論文目標 3 1.4 論文架構 3 第二章 機器人系統架構與軟硬體規格 4 2.1 系統架構 4 2.2 硬體規格 5 2.2.1 馬達(Dynamixel AX-12) 5 2.2.2 NIOS發展板(CFEC Cyclone II Starter Kit研發電路板) 7 2.2.3 電池 8 2.2.4 電源轉換電路板 8 2.2.5 Zigbee無線通訊模組(Zig-100) 9 2.2.6 無線攝影機 11 2.2.7 Sharp GP2D12紅外線距離感測器 11 2.3 機構設計與硬體配置 12 2.4 實驗環境簡介 15 2.5 開發軟體與人機介面 16 2.6 演算法流程 18 第三章 機器人控制與動作開發 20 3.1 前言 20 3.2 基本動作控制 21 3.2.1 線性內插平滑化 21 3.2.2 延遲時間控制 21 3.2.3 基本動作控制流程 22 3.3 馬達扭力配置 23 3.4 動作規劃 25 3.5 步態開發 27 3.5.1 重心轉移原則 27 3.5.2 前進步態開發 27 3.5.3 平移步態開發 30 3.5.4 旋轉步態開發 31 3.5.5 機器人合作搬運步態開發 32 3.6 鏡射關係 34 3.7 夾取物體控制 35 第四章 實驗結果 40 4.1 基本動作狀態分解 40 4.1.1 前進與後退步伐狀態分解 40 4.1.2 平移狀態分解 43 4.1.3 旋轉狀態分解 43 4.1.4 鞠躬狀態分解 44 4.1.5 伏地挺身狀態分解 45 4.1.6 合作搬運前進與平移狀態分解 46 4.2 夾取控制實驗結果 47 4.2.1 夾取大物體(寬度=18.5cm) 48 4.2.2 夾取小物體(寬度=5cm) 49 4.2.3 夾取物體失敗(寬度=0) 50 第五章 結論與未來展望 52 5.1 結論 52 5.2 未來展望 53 參考文獻 54

    [1] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal locomotion,” The Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, April 26-May 1, 2004, pp.2619-2624.
    [2] L. Geppert, “Qrio, the robot that could,” IEEE Spectrum, vol. 41, pp.34-37, 2004.
    [3] M. Veloso, N. Armstrong-Crews, S. Chernova, E. Crawford, C. McMillen, M. Roth, and D. Vail, “A team of humanoid game commentators,” The Proceedings of IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy, December 4-6, 2006, pp.228-233.
    [4] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” The Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18-22, 2005, pp629-634.
    [5] C. H. Lin, H Andrian, Y. Q. Wang, and K. T. Song, “Personal assistant robot,” The Proceedings of IEEE International Conference on Mechatronics, Taipei, Taiwan, July 10-12, 2005, pp.434-438.
    [6] J. H. Park and H. Chung, “ZMP compensation by online trajectory generation for biped robots,” The Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, October 12-15, 1999, vol.4, pp.960-965.
    [7] J. H. Park and Y. K. Rhee, “ZMP trajectory generation for reduced trunk motions of biped robots.” The Proceedings of IEEE International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, October 13-17, 1998, vol.1, pp. 90-95.
    [8] Y. Ogura, K. Shimomura, H. Kondo, A. Morishima, T. Okubo, S. Momoki, H. Lim, and A. Takanishi, “Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot.” The Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 13-17, 2006, pp. 3976-3981.
    [9] F. R. Sias, Jr. and Y. F. Zheng, “How many degrees-of-freedom does a biped need?” The Proceedings of IROS’90 IEEE International Workshop on Intelligent Robots and Systems, Ibaraki, Japan, July 3-6, 1990, vol.1, pp. 297–302.
    [10] Yu. Ogura, T. Kataoka, H. Aikawa, K. Shimomura, Hun-ok Lim, and A. Takanishi, “Evaluation of various walking patterns of biped humanoid robot.” The Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18-22, pp.603-608.
    [11] C. L. Shih and C. J. Chiou, “The motion control of a statically stable biped robot on an uneven floor.” IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, vol.28, pp244-249, 1998.
    [12] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion” IEEE Transactions on Biomedical Engineering, vol.BME-21, pp.102-108, 1974.
    [13] Q.Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, “Planning walking patterns for a biped robot,” IEEE Transactions on Robotics and Automation, vol.17, pp.280-289, 2001.
    [14] J. K. Hodgins and M. H. Raibert, “Adjusting step length for rough terrain locomotion,” IEEE Transactions on Robotics and Automation, vol.7, pp.289-298, 1991.
    [15] Y. Kurematsu, S. Kitamura, and Y. Kondo, “Trajectory planning and control of a biped locomotive robot-simulation and experiment,” Robotics and Manufacturing, Recent Trends in Research, Education and Applications, M.Jamshidi(ed.), pp.65-72, ASME Press, 1988.
    [16] 陳慶逸、林柏辰, VHDL數位電路實習與專題設計, 文魁資訊股份有限公司, 2004.
    [17] 洪國勝、江國軍、龍國忠、洪月裡, C++ Builder 6 程式設計快樂上手, 旗標出版股份有限公司, 2006
    [18] 陳盈翰(王文俊教授 指導), 多自由度雙足機器人之設計與控制實現, 碩士論文, 國立中央大學電機工程學系, 2005.
    [19] 周立柏(王文俊教授 指導), 具模仿能力之智慧型雙足機器人之設計與實現, 碩士論文, 國立中央大學電機工程學系, 2006.
    [20] Robotis 網站 http://www.robotis.com/html/main.php, AX-12 Manual (English) 說明書
    [21] Robotis 網站 http://www.robotis.com/html/main.php, Bioloid QuickStart (comprehensive kit) 說明書

    QR CODE
    :::