| 研究生: |
楊凱雯 KaiWen Yang |
|---|---|
| 論文名稱: |
鋁鍺薄膜封裝研究 The Study of Al-Ge Thin Films on Package |
| 指導教授: |
吳子嘉
Albert T. Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 鋁鍺薄膜 、共晶接合 、MEMS封裝 |
| 外文關鍵詞: | eutectic bonding, MEMS package, Al-Ge thin film |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
共晶接合為微機電封裝的一種選擇,且密封性為一重要考量。利用高分子材料進行接合雖然有製程溫度低的優點,然而高分子材料本身結構存在許多排列鬆散的空間,許多的孔洞存在其中,外界中的微粒與水氣仍會進入系統內部中空腔室,這將會干擾這些脆弱的結構,導致系統於長期使用中的正常運作可靠度大幅降低,甚至損壞結構。由於金屬原子本身堆疊的緻密性以及受力所展現的延展性,且共晶點溫度小於純金屬的熔點,將能降低能源成本,避免在高溫製程中對元件造成損壞,因此在本實驗中,我們考慮利用鋁鍺共晶薄膜進行微機電封裝的接合動作,期望達到密封性封裝的效果。文獻中可得知共晶薄膜接合可有效地降低接合溫度,且經過拉伸測試與漏氣測試後知悉共晶薄膜接合有不錯的表現。
我們使用濺鍍的方式在矽基材上分別鍍上一層鋁與一層鍺,厚度各為100 nm,考慮氧化的問題,先鍍上鋁接著在不破真空的狀態下鍍上鍺,接著以200℃、400℃的溫度進行退火以觀察晶相的變化與擴散行為。計算可得200℃下交互擴散係數10^-22 m2/s,十天可擴散的長度約9nm,仍舊維持薄膜雙層結構;400℃下交互擴散係數為10^-20 m2/s,十天可擴散的長度約93nm,薄膜雙層結構消失且表面有許多的突起物,為釋放應力之結果。在這裡,鋁為主要擴散物種,由於濃度梯度的關係由下層擴散至試片上層,鍺相互聚集將中間的鋁擠出平面,形成雙層結構之突起物,試片表面由於相分離的關係分為富鍺區與富鋁區。
最後利用共晶組成的鋁鍺薄膜進行接合,鋁鍺共晶溫度為424℃,以高於共晶溫度100℃的溫度進行退火五小時,接合結果簡單地以紅墨水測試,接合區域沒有紅墨水滲入,初步證實鋁鍺共晶薄膜在密封性包裝上的可行性。
Eutectic bonding is one of the methods among MEMS packaging, and hermetic sealing is an essential consideration. Although polymer material offers a low temperature progress, however, particles and moisture would penetrate through the loose molecular structure and get into the inner tiny chamber. It would destroy or disturb these fragile structures and therefore decrease the reliability for long period working. Due to the dense package of atoms and the ductile property, the alloy of Al-Ge may provide a new option for the application on MEMS hermetic sealing. Alloy of eutectic composition would melt at the temperature much lower than pure metal, it would effectively decrease the energy cost and avoid the mechanical damage to structure during the process. Therefore, the eutectic Al-Ge thin films could effectively lower the bonding temperature and show good performance in bonding quality according to the results of pull test and leak tests in previous studies.
In this experiment, the Al-Ge thin films were deposited on silicon wafer by sequential sputtering at room temperature. The thicknesses were 100nm for each layer. Ge layer was deposited after Al layer without venting. After deposition, the Al-Ge films were annealed at 200℃ and 400℃ in vacuum furnace to observe the diffusion behavior and the crystallization. We could get the diffusivity of interdiffusion from calculation, about 10-22 m2/s for 200℃ and 10-20 m2/s for 400℃. The films could maintain the bi-layer structure at 200℃ for the diffusion length is only 9.2nm after 10 days. However, the bi-layer structure disappeared after annealing at 400℃ for the diffusion length is about 93nm after 10 days. Also, there were a lot of extrusions on the surface due to relieving the inner stress. Here, Al is the dominant diffusion species and diffused to the surface due to the large concentration gradient. Ge atoms on the surface started to segregate to relieve the stress. Small Al-rich pellets surrounded by Ge-rich region were extruded out of the plane to further release the residual stress. The matrix area could be divided into Al-rich area and Ge-rich area due to phase separation phenomena.
At the final step, we use eutectic Al-Ge thin film to execute the bonding experiment at 525℃ for 5 hours, 100℃ higher than the eutectic temperature. The bonding result is examined using a easy test, the red ink test, to investigate the ability of defense against the red ink. The red ink didn’t permeate into the bonded area. And it could offer a rough proof that Al-Ge eutectic bondimg had achieved the goal of hermetic sealing.
1. A. Hanneborg, “Silicon wafer bonding techniques for assembly of micromechanical elements”, IEEE, MEMS Technical digest, 92-98 (1991)
2. A. Hanneborg, M. Nese, H. Jakobsen and R. Holm, “Silicon-to-thin film anodic bonding,” J. Micromech. Microeng., 2, 117-121 (1992)
3. A. Hanneborg, M. Nese and P. A. Ohlckers, “Silicon-to-Silicon anodic bonding”, MME Technical digest, 100-107 (1990)
4. A. Hanneborg , M. Nese and P. A. Ohlckers, “Silicon-to-silicon anodic bonding”, J . Micromech. Microeng. 1, pp. 1139-1144 (1991)
5. T. R. Anthony, “Anodic bonding of imperfect surfaces”, Appl. Phys., 54, 2419-2428 (1983)
6. T. R. Anthony, “Dielectric isolation of silicon by anodic bonding”, J. Appl. Phys., 58, 1240-1247 (1985)
7. R. Legtenber, S. Bouwstra and M. Elwenspoek, “Low-temperature glass bonding for sensor applications”, MME Technical digest, 94-99 (1990)
8. M. Esashi et al., “Low-temperature silicon-to-silicon anodic bonding with intermediate low melting point glass”, Sens. Actuators.,A21-A23, 931-934 (1989)
9. G. Wallis and D. I. Pomerantz, “Field Assisted Glass-Metal Sealing”, J. Appl. Phys., 40, 3946-3949 (1969)
10. Y. Jin et al., “MEMS vacuum package technology and applications”, 2003 Electronics Packaging Technology Conference, 301-306 (2003)
11. J. B. Lasky, “Wafer bonding for Silicon-on-insulator technologies”, Appl. Phys. Lett., 48, 78-80 (1986)
12. H. Ohashi, J. Ohura, T. Tsuneo and M. Simbo, “lmproved dielectrically isolated device integration by silicon-wafer direct bonding technique”, Proc. IEDM, 86,, 210-213 (1986)
13. G. G. Goetz, “Generalized wafer bonding”, Proc. I Symp. on Wafer Bonding Abstract, 679 (1991)
14. M. E. Grupen-Shemansky, G. W. Hawkins and H. M. Liaw, “Stress in GaAs bonded to silicon”, Proc. I Symp. on Wafer Bonding, Abstract, 690 (1991)
15. C. Harendt, H. G. Graf, B. Hofflinger and E Penteker, “Silicon fusion bonding and its characterization”, J. Micromech. Microeng., 2, 113-116 (1992)
16. R. Stengl, T. Tan and U. Gosele, “A model for the silicon wafer bonding process”, Jap. J . Appl. Phys., 28, 1735-1741 (1989)
17. C. Harendt et al., “Silicon direct bonding for sensor applications: characterization of the bond quality Sensor”, Actuators A25, 87-92 (1991)
18. P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures,” Proc. Transducers, Int. Conf. Solid-State Sensors and Actuators, 2632-2664 (1989)
19. M. Shimbo , K. Furukawa and K. Fukada, “Silicon-to-silicon direct bonding method,” J. Appl. Phys., 60, 8, 2987-2989 (1986)
20. H. Takagi et al., “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method,” Sens. Actuators. A , 70, 164-170 (1998)
21. Y. T. Cheng, L. Lin and K. Najafi, “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging,” J. Microelectromech. Syst. , 9, 1, (2000)
22. P.H Chang, G. Berman, and C. C. Chen, “Transmission electron microscopy of gold-silicon interactions on the backside of wafers”, J. Appl. Phys., 63, 1473–1477 (1988)
23. A. L. Tiensuu et al., “Assembling three-dimensional microstructures using gold-silicon eutectic bonding”, Sens. Actuators, 45, 227–236 (1994)
24. D. Weiss et al. , “An integrated cavity wafer level chip size package for MEMS”, Proc. SPIE 4557, 183–191 (2001)
25. B. Bustgens et al., “Micropump manufactured by thermoplastic molding,” Proc. IEEE MEMS, 18–21 (1994)
26. W. K. Schomburg et al., “AMANDA-low-cost production of microfluidic devices”, Sens. Actuators. A, 70, 153–158 (1998)
27. F. Niklaus et al.,“Low temperature full wafer adhesive bonding”, J. Micromech. Microeng., 11, 2, 100-107 (2001)
28. A. Klumpp et al., “Vertical system integration technology for high speed applications by using inter-chip vias and solid-liquid interdiffusion bonding”, The World of Electronic Packaging and System Integration, 42–47 (2004)
29. H. A. Yang, M. Wu and W. Fang, “Localized induction heating solder bonding for wafer level MEMS packaging,” J. Micromech. Microeng., 15, 394-399 (2005)
30. K. Minami, T. Moriuchi, M. Esashi, 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Digest of Technical Papers, 1, 240-243 (1995)
31. S. Mack, U. Gosele and H. Baumann, “Gas Tightness of Cavities Sealed By Silicon Wafer Bonding’’, IEEE, 488-493 (1997)
32. Y. Jin et al., “An investigation on NEG Thick Film for Vacuum Packaging of MEMS”, Proc. SPIE, 4980, 275-280 (2003)
33. Y. Jin, J. W. Zhang and L. Zhao, “The investigation of a getter film used in vacuum packaging and maintenance for MEMS application”, MEMS Workshop Digest, 235-238 (2002)
34. Markunas, Bob, “Wafer-scale Encapsulation: Controlling MEMS packaging
costs.” Advanced Packaging, 11, 12, S11-S14 (2002)
35. K. Fukutani et al., “Nanowire array fabricated by Al–Ge phase separation”, Thin Solid Films, 515, 4629–4635 (2007)
36. Bao Vu and P. M. Zavracky, “Patterned eutectic bonding with Al/Ge thin films for microelectromechanical systems.” J. Vac. Sci. Technol. B, 14(4) (1996)
37. P. M. Zavracky and Bao Vu,”Patterned Eutectic Bonding with Al/Ge Thin Films for MEMS”, proc. SPIE, 2639, 46-52 (1996)
38. Fanghua Mei, J. Jiang, W. J. Meng, ” Eutectic bonding of Al-based high aspect ratio microscale structures, “ Microsyst. Technol., 13, 723–730 (2007)
39. G. Ottaviani et al., “An aluminum-germanium eutectic structure for silicon wafer bonding technology,” Phys. Stat. Sol. (c) , 2, 10, 3706-3709 (2005)
40. S. Gall et al., “Aluminum-induced crystallization of amorphous silicon,” J. Non-Crys. Solids, 299-302, 741-745 (2002)
41. F. Katsuki, K. Hanafusa, and M. Yonemura, “Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a-SiO2 substrate”, J. Appl. Phys., 89, 8, 4643-4647 (2001)
42. L. Pereira et al.,”Polycrystalline silicon obtained by metal induced crystallization using different metals”,Thin Solid Films, 451-452, 987-990 (2004)
43. Z. M. Wang et al.,”Explosive crystallization of amorphous germanium in Ge/Al layer systems; compared with Si/Al layers systems”, Scr. Mater., 55, 334-339 (2006)
44. M. Gjukic et al., “Aluminum-induced crystallization of amorphous silicon-germanium thin films”, Appl. Phys. Lett., 85, 11, 2134-2136 (2004)
45. Z. M. Wang et al, ”Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers,” Acta Mater., 56, 5047-5057 (2008)
46. G. Raghavan and R. Rajaraman, “Role of defects in metal mediated crystallization in Al/a-Ge multilayers”, Phys. Rev. B, 68, 012104, (2003)
47. B. S. Lim et al., “Thermal behavior of Al and AI-3 at. % Ge thin films on Si wafers”, J. Appl. Phys., 74, 4, 2945-2947 (1993)
48. K. Fujiwara and Z. Horita, “Measurement of intrinsic diffusion coefficient of Al and Ni in Ni3Al using Ni/NiAl diffusion couples,” Acta Mater., 50, 1571-1579 (2002)
49. T. Ikeda et al. “Single-phase interdiffusion in Ni3Al”, Acta Mater., 46, 15, 5369-5376 (1998)
50. M. Koppers et al., ”Intrinsic self-diffusion and substitutional Al diffusion in α–Ti”, Acta Mater., 45, 10, 4181-4191 (1997)
51. E. Silveira, W. Dondl and G. Abstreiter, ”Ge self-diffusion isotopic (70Ge)n(74Ge)m superlattices: A Raman study”, Phys. Rev. B, 56, 4, 2062-2069 (1997)
52. M. Werner and H. Mehrer, ”Effect of hydrostatic pressure, temperature, and doping on self-diffusion in germanium”, Phys. Rev. B, 32, 6, 3930-3937 (1985)
53. S. V. Divinski et al., ”Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component”, Acta Mater., 46, 12, 4369-4380 (1998)
54. M. Saito et al., “Effect of Cu Seed Layers on the Properties of Electroplated
Sn-Cu Films”, J. Electrochem. Soc, 156, 5, E86-E90 (2009)