| 研究生: |
陳慧瑜 Hui-Yu Chen |
|---|---|
| 論文名稱: |
用泰勒級數求三角形內部向量及二維元件模擬 Finding internal vector from the Taylor series in arbitrary triangle element for 2D semiconductor device simulation |
| 指導教授: | 蔡曜聰 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 半導體元件 、泰勒級數 、元件模擬 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們藉由泰勒級數法開發出了一套三角形網格模組,並利用此三角形網格模組去進行了半導體元件模擬,以驗證我們所開發出的模組是可行的,且利用泰勒級數法能夠更迅速更簡單地求出三角形內部電場。其中我們討論了零件掃描法應用於計算封閉面的優點,並利用矩型網格去做簡單的概念推導,接著再進入本論文的核心,介紹如何利用泰勒級數去求出三角形內部電場並開發出完整的三角形網格模組,最後再藉由程式去進行模擬驗證,包括三角形內部電場、電子電洞流密度與單顆矩型電阻,待確認我們所開發出的程式是有效的後,再將此三角形網格應用於其他半導體元件如PN二極體與BJT等,並模擬其特性曲線。
In this thesis, we successfully develop a triangular module by using the Taylor series, and use this module to simulate semiconductor devices and verify its validity. Furthermore, using the Taylor series to calculate the electric field of the triangular module is easy and simple. First of all, we discuss that using the element-by-element method in calculating the Gaussian surface is better than the node-by-node method, and we use the rectangular mesh module to explain a simple concept derivation. Then we introduce how to use the Taylor series to calculate the electric field, drift and diffusion current and verify the values. We also simulate a simple resistor and compare the value with the theoretical value. After confirming the resistor validity, we apply it to other semiconductor devices such as PN diodes and BJTs, and simulate their characteristic curves.
[1] Y. M. Li, “Research on Development of Computer Simulation Methods for Semiconductor Devices and Nanostructures,” D. S. Thesis, Institute of Electronics, National Chiao Tung University, Taiwan, Republic of China, 2000.
[2] M. J. Zeng, “Development of Triangular Element and its Applications to Arbitrary 2D Semiconductor Device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
[3] W. T. Shen, “Finding Internal Vector from the Edge Vector in Obtuse Triangle Element for 2D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2016.
[4] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s Equation in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
[5] M. S. Li, “Rectangular Transform of Trapezoidal Mesh and Its Application to Cylindrical MOSFETs,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2011.
[6] M. C. Huang, “Area-Partition Problems in 2D Semiconductor Devices Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
[7] D. J. Riley and C. D. Turner, “Interfacing Unstructured Tetrahedron Grids to Structured-Grid FDTD,” IEEE Trans, Microwave and Guide Wave Letters, vol. 5, no. 9, pp.284-286, Sep 1995.
[8] D. A. Neamen, Semiconductor Physics and Devices, 3rd ed. McGraw-Hill Companies Inc., New York, 2003.
[9] R. E. Bank, D. J. Rose, and W. Fitchtner, “Numerical Methods for Semiconductor Device,” IEEE Trans, Electron Devices, vol. 30, no. 9, Sep.1983.
[10] J. H. Seo, Y. J. Yoon, S. Lee, J. H. Lee, S. Cho, and I. M. Kang, “Design and Analysis of Si-Based Arch-Shaped Gate-All-Around (GAA) Tunneling Field-Effect Transistor (TFET),” Current Applied Physics, vol. 15, pp.208-212, 2015.
[11] B. Adolph and F. Bechstedt, “Ab Initio Second-Harmonic Susceptibilities of Semiconductors: Generalized Tetrahedron Method and Quasiparticle Effects,” Physical Review B, 1998.
[12] M. B. Patil, “New Discretization Scheme for Two-Dimensional Semiconductor Device Simulation on Triangular Grid.” IEEE Trans, Computer-Aided Design of Integrated Circuits and System, vol. 17, no. 11, pp.1160-1165, Nov. 1998.
[13] C. C. Lin and M. E. Law, “2-D Mesh Adaption and Flux Discretization for Dopant Diffusion Modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, pp.194-207, Feb. 1996.
[14] H. C. Casey. Devices for integrated circuits: silicon and III-V compound semiconductors. New York: John Wiley, 1999.
[15] P. C. Cordes, “Finite Element Approximation of the Diffusion Operator on Tetrahedral,” Society for Industrial and Applied Mathematics, vol. 19, no. 4, pp.1154-1168, 1998.
[16] C. C. Chang, “Improvement of 2-D and 3-D Semiconductor Devices Simulation Using Equivalent Circuit Model,” Ph.D. Dissertation, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2006.
[17] Y. C. Lin, “Breakdown Simulation of a Spherical PN Junction in Cylindrical Coordinates,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2012.
[18] T.W. Huang, “Finding Internal Vector from the Axis Method in Arbitrary Triangle Element for 2-D Semiconductor Device Simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2018.