| 研究生: |
闕立恩 CHUEH,LI-EN |
|---|---|
| 論文名稱: |
電弧爐爐碴經安定化處理製成混凝土製品之研究 |
| 指導教授: | 黃偉慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 爐碴細粒料 、鹼活化技術 |
| 外文關鍵詞: | Slag fine aggregate, alkali activation technology |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
爐碴細粒料為電弧爐煉鋼之副產品,爐碴細粒料經過前置處理後則在某些情況下能取代天然細粒料使用本研究將爐碴粒料、水淬爐石粉、氫氧化鈉溶液及矽酸鈉溶液(水玻璃)激發爐碴膠結活性,一方面探討鹼活化爐石粉膠結材料在不同含鹼當量、鹼模數比及水膠比下,對新拌及硬固性質之影響,本研究參考ASTM C1260之養護環境,將使用爐碴粒料之試體浸泡於80℃濃度1N的NaOH溶液中,持續14天後取出試體並量測其膨脹量,最後利用較佳鹼活化配比製作高壓混凝土磚,探討鹼活化技術隊再利用產品之成效。
試驗結果顯示:(1)鹼活化砂漿之凝結時間會隨著含鹼當量增加而縮短,提高鹼模數比則可增加漿體之流動性;(2)使用爐碴細粒料之鹼活化砂漿於含鹼當量5%及鹼模數比0.75時,抗壓強度可優於水泥砂漿之抗壓強度;而提高鹼活化劑濃度對砂漿之抗壓強度發展越好;(3)利用鹼活化技術可使浸泡於80℃濃度1N的NaOH溶液中之養護環境下有抑制膨脹的效果;(4)使用爐碴粒料製成混凝土磚使用爐碴粒料時含鹼當量6%及鹼模數比1.75時,符合CNS 13295 規範C級磚。
Slag fine aggregates are by-products of electric arc furnace steelmaking. After the slag fine aggregates are pre-treated, they can replace natural fine aggregates in some cases. In this study, the researcher used slag aggregates, water quenched stove powder, sodium hydroxide solution, and sodium silicate solution (water glass) to activate the slag cementation activity. The objective was to explore the effects that the alkali activated furnace powder cementing material have on the new mix and the hardening properties under different alkali equivalent volumes, alkali modulus ratios, and water-cement ratios. In this study, the researcher referred to the curing environment of ASTM C1260 to soak the slag aggregate specimen in 80 ℃ 1N concentration NaOH solution. After 14 days, the researcher removed the test specimen and measured the amount of expansion. Finally, the researcher used the preferred alkali activation ratio to produce high-pressure concrete bricks and investigate the performances of the alkali activation technology for recycled products.
The study results indicated that: (1) The condensation time of alkali activated mortar would shorten as the alkali equivalent volume is increased. (2) When the alkali activated mortar of the slag fine aggregates has the alkali equivalent volume of 5% and alkali modulus ratio of 0.75, the compressive strength is greater than the cement mortar; the higher the alkali activator concentration, the better the compressive strength development for the mortar. (3) The alkali activation technology can have an expansion suppressing effect for the specimen soaked in the 80 ℃ 1N concentration NaOH solution. (4) When slag aggregates are used to make concrete bricks, the bricks would achieve CNS 13295 specification C-grade compliant if the alkali equivalent volume is 6% and the alkali modulus ratio is 1.75.
行政院公共工程委員會,(2001),「公共工程高爐石混凝土使用手冊」。
李宜桃,(2003),「鹼活化還原碴漿體收縮及抑制方法之研究」,國立中央大學土木工程研究所碩士學位論文,中壢。
林怡忻,(2014),「混合礦碴作為混凝土膠結材料之成效評估」,國立中央大學土木工程研究所碩士論文,中壢。
余姵如,(2009),「磚製品中摻配鈦砂之較佳配比研究」,國立中央大學土木工程研究所碩士論文,中壢。
吳明富,(2013),「還原碴-高爐石作為混合膠結材之應用」,國立中央大學土木工程研究所碩士論文,中壢。
郭硯華,(2007),「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士論文,中壢。
陳立,(2003),「電弧爐氧化碴為混凝土骨材之可行性研究」,國立中央大學土木工程研究所碩士論文,中壢。
經濟部工業局,(2001),「電弧爐煉鋼還原碴資源化應用技術手冊」。
劉邦龍,(2013) ,「作為混凝土細粒料的膨脹安定化方法及檢測技術研究」,國立中央大學土木工程研究所碩士論文,中壢。
蕭遠智,(2002),「鹼活化電弧爐還原碴漿體之水化反應特性」,國立中央大學土木工程研究所碩士學位論文,中壢。
鐘文煥,(2010),「爐碴細粒料應用於製作鹼活化還原碴混凝土可行性研究」,國立中央大學土木工程研究所碩士論文,中壢。
Bakharev T., Sanjayan J.G., and Cheng, Y. B.(1999), “ Alkali activation of Australian slag cement.” Cement and Concrete Research, 29(1), 113-120.
Krizan, D., and Zivanovic, B., (2002) “ Effects of dosage and modulus of water glass on early hydration of alkali-slag cement.” Cement and Concrete Research, 32 (7), 1181-1188.
Luckman, M., Satish, V, and D, V. (2009) “ Cementitious and pozzolanic behavior of electric arc furnace steel Slags.” Cement and Concrete Research, 39(2), 102-109.
Leemann, A., Le Saout, G., Winnefeld, F., Rentsch, D., and Lothenbach, B.(2011) “Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. ” J. Am. Ceram. Soc., 94 (4), 1243-1249.
Mehta, P.K.(1986). Concrete Structure , Properties , and Materials .Prentice-Hall. Inc., Englewood Cliffs, New Jersey, U.S.A.
Shi, C., and Day R. L.(1996), “ Some factors affecting early hydration of alkali-slag cement.” Cement and Concrete Research, 26(3), 439-447.
Song, S., and Jennings H. M.(1999), “ Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29(2), 159-170.
Shi, C, Day RL (2001). “ Comparison of different methods for enhancing reactivity of pozzolans.” Cement and Concrete Research, 31(5), 813-818.
Shi, C. (2004). “ Steel slag—its production, processing, characteristics, and cementitious properties.” J. Mater. Civ. Eng., 16(3), 230-236.
Shi, C., Krivenko, P. V., Roy, D. (2006). “ Alkali-activated cements and concretes.” Taylor & Francis, New York.
Shi, Z., Shi, C., Zhao, R., and Wan, S. (2015). “Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. ” Materials and Structures, 48(3), 743-751.
Wang, S. D., Scrivener, K. L., and Pratt, P. L., (1994) “ Factors affecting the strength of alkali-activated slag. ” Cement and Concrete Research 24(6)﹐1033-1043.