| 研究生: |
納莉娜 Izaina Nurfitriana |
|---|---|
| 論文名稱: | Permutation Entropy Variation of Seismic Noise prior to Eruptive Activity at Shinmoedake Volcano, Japan |
| 指導教授: |
柯士達
K.I. Konstantinou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 排列熵 、新燃岳火山 、震顫 、極化分析 |
| 外文關鍵詞: | Polarization analysis, Shinmoedake |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的二十年中,用於數據分析的排列熵(PE)的使用一直在迅速增
長。衡量任意時間序列複雜性的能力在許多領域都有廣泛的應用。我們試圖在
火山學中使用這種方法作為火山爆發預測的方法。我們在日本九州島研究了
2011 年 1 月的新燃岳火山爆發序列。
2011 年 1 月,新燃岳火山爆發了最大規模的火山爆發,其中包括持續兩週
的子普林尼式噴氣,連續爆炸和熔岩侵位階段。在這項研究中,我們將 PE 計
算應用於新燃岳火山周圍記錄的地震噪聲。我們還計算了譜圖和極化分析作為
支持材料來分析 PE 的變化。結果顯示,PE 在 2011 年 1 月 1 日至 17 日呈現振
盪模式,然後在 2011 年 1 月 18 日至 31 日期間下降並降低。2011 年 1 月 1 日至
17 日期間 PE 的振盪模式主要與天氣變化有關,且並未引起通過火山活動。
2011 年 1 月 18 日至 31 日期間 PE 值的下降與震顫發生同時發生。我們發現震
顫中的確定性行為是導致一般 PE 值降低的主要因素。極化分析結果還表明,
在低 PE 值時期,地震源的方位角方向指向新燃岳火山口。我們還繪製了
Ichihara 和 Matsumoto(2017)的 PE 值和震顫深度位置,以檢查它們之間是否
存在相關性。結果顯示 PE 與震顫深度位置成反比關係。當震顫源向上遷移並
到達水層時,PE 減少。這種降低的 PE 可能是由於水層內沸騰產生的氣泡形
成,蒸汽和高溫引起的衰減過程的結果。相反,當震顫源遷移到比水層更深
時,PE 增加。這種增加的 PE 可能是由於沒有氣泡,蒸汽和更高的溫度。該系
統不會衰減高頻並可能產生更隨機的信號。 PE 有可能在火山爆發前早期發現
震顫。隨著震顫在主要噴發之前開始,PE 減少。在 2011 年 1 月的新燃岳噴發
序列可觀察到 PE 值的增加和突然下降模式。
In the past two decades, the use of permutation entropy (PE) for data analysis has been growing rapidly. The ability to measure the complexity of an arbitrary time series has had a wide application in many fields. We attempt to use this method in volcanology as an approach to volcanic eruption forecasting. We studied the January 2011 Shinmoedake eruptions sequence, in Kyushu island, Japan. The Shinmoedake volcano had its largest eruption in January 2011 with phreatomagmatic, sub-plinian, continuous explosion and lava emplacement stages, that lasted for two weeks. In this study, we applied the PE calculation to seismic noise recorded around the Shinmoedake volcano. We also performed spectral and polarization analysis as supporting materials to analyze the variation of PE. The results show that PE exhibited an oscillatory pattern during 1-17 January 2011 and then decreased and became lower during 18-31 January 2011. The oscillatory pattern of PE during 1-17 January 2011 was related mostly to the weather change and was not caused by volcanic activities. The decrease of PE values during 18-31 January 2011 coincided with tremor occurrence. We found that the deterministic behavior in tremor was a causative factor that led to decreasing PE values in general. The polarization analysis results also showed that in the periods of low-PE value, the azimuth direction of seismic sources pointed toward the Shinmoedake crater. We also plotted the PE values and tremor depth locations from Ichihara and Matsumoto (2017) to check if there is a correlation between them. The results showed that PE has an inverse relationship with tremor depth locations. When tremor sources migrated upwards and reached the water layer, PE decreased. This decreasing PE was probably a result of attenuation processes due to bubble formation, steam, and high temperature that arise from boiling inside the water layer. On the contrary, when tremor sources migrated deeper than the water layer, PE increased. This increasing PE was probably due to the absence of bubbles, steam, and higher temperature. The system would not attenuate high frequencies and hence produce a more stochastic signal. PE has the potential to detect tremor early before the eruption. PE decreases as the tremor starts before the main eruption. PE also captured the eruption events in January 2011 Shinmoedake eruptions sequence. They were marked with an increasing and sudden drop pattern of PE values.
Bandt, C. & Pompe, B., 2002. Permutation Entropy : A Natural Complexity Measure for Time Series. Phys. Rev. Lett., 88, 174102-1--174102-4. doi: 10.1103/PhysRevLett.88.174102
Berens, P., 2009. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw., 31, 1-21
Brenguier, F., Shapiro, N., Campilo, M., Ferrazzini, V., Duputel, Z., Countant, O., Necressian, A., 2008. Toward forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126-130. doi:10.1038/ngeo104
Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E, 70, 046217-1-- 046217-6. doi: 10.1103/PhysRevE.70.046217
Chouet, B. A., 1996. Long-period volcano seismicity : its source and use in eruption forecasting. Nature, 380, 309-316.
Cannata, A., Cannavò, F., Montalto, P., Ercoli, M., Mancinelli, P., Pauselli, C., et al., 2017. Monitoring crustal changes at volcanoes by seismic noise interferometry: Mt. Etna case of study. J. Volcanol. Geotherm. Res., 37, 165–174.
doi: 10.1016/j.jvolgeores.2017.03.023
Daw, C. S., Finney, C. E. A., and Tracy, E. R., 2003. A Review of Symbolic Analysis of Experimental Data. Rev. Sci. Instrum., 74(2), 915–930.
Duputel, Z. Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., Nercessian, A., 2009. Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Reunion) from January 2006 to June 2007. J. Volcanol. Geoterm. Res., 184, 164-173. doi:10.1016/j.jvolgeores.2008.11.024
Dutta, D., Bhattacharjee, J.K., 2007. Limit cycle oscillations. Vibration Problem ICOVP-2007, 125-135
Glynn, C. C. & Konstantinou, K. I., 2016. Reduction of randomness in seismic noise as a short- term precursor to a volcanic eruption. Scientific Reports, 6, 37733. doi: 10.1038.srep37733
Grassberger, P. & Procaccia, I., 1983. Characterization of strange attractors. Phys. Rev. Lett., 50, 346–349
Gret, A., Snieder, R., Aster, R. C. & Kyle, P. R., 2005. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys. Res. Lett., 32(L06304). doi:10.1029/2004GL021143
Haney, M., 2009. Polarizemic: 3 component seismic polarization analysis. Retrieved from https://github.com/dylanmikesell/Polarizemic
Hilborn, R. C., 1994. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, 654.
Ichihara, M. & Matsumoto, S., 2017. Relative Source Locations of Continuous Tremor Before and After the Subplinian Events at Shinmoe-dake, in 2011. Geophys. Res. Lett., 44, 10871-10877. doi: 10.1002/2017GL075293
Imura, R. & Kobayashi, T., 1991. Eruptions of Shinmoe-dake volcano, Kirishima volcano group, in the last 300 years. Bull. Volc. Soc Japan, 36, 135-146.
Julian, B.R., 2000. Period doubling and other nonlinear phenomena in volcanic earthquakes and tremor, J. Volcanol. Geotherm. Res., 101, 19–26.
Jurkevics, A., 1988. Polarization analysis of three‐component array data. Bull. Seismol. Soc. Am., 78, 1725–1743.
Kagiyama, T., Takeo, M., and Tsutsui, M., 2013. Report of the Japan Meteorology Agency. Tokyo: JMA
Kagiyama, T., Utada, H., Uyeshima, M., Masutani, F., Kanda, W., Tanaka, Y., ... Mishina, M., 1996. Resistivity structure of the central and the southeastern part of Kirishima volcanoes. Bull. Volcanol. Soc. Jpn., 41, 215–224.
Kamata H., 1998. Quaternary volcanic front at the junction of the Southwest Japan Arc and the
Ryukyu Arc. J. Asian Earth Sci., 16, 67–75.
Kamata, H., & Kodama, K., 1999. Volcanic history and tectonics of the Southwest Japan Arc. Island Arc, 8 (3), 393-403. doi: 10.1046/j.1440-1738.1999.00241.x
Kato, K., & Yamasato, H., 2013. The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan—Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency—. Earth, Planets and Space, 65, 489–504. doi:10.5047/eps.2013.05.009
Killick, R., Paul F., and Idris A., 2012. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc., 107, 1590–1598.
Langton, C.G., 1992. Life on the edge of chaos. Artificial Life II, Santa Fé Institute Studies in the Sciences of Complexity (Proceedings Vol. X) (Langton, C.G., Taylor, C., Farmer, J.D., and Rasmussen, S., Eds.) Addison-Wesley, Redwood City CA, USA, pp. 41-91.
Lavielle, M., 2005. Using penalized contrasts for the change-point problem. Signal Processing, 85, 1501–1510.
Miyabuchi, Y., Hanada, D., Niimi, H., Kobayashi, T., 2013. Stratigraphy, grain-size and component characteristics of the 2011 Shinmoedake eruption deposits, Kirishima Volcano, Japan. J. Volcanol. Geotherm. Res., 258, 31–46.
Modret, A., Jolly, A., Duputel, Z. & Fournier, N., 2010. Monitoring of phreatic eruptions using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise: Results from Mt. Ruapehu, New Zealand. J. Volcanol. Geoterm. Res, 191(2010), 46-59.
doi: 10.1016/j.jvolgeores.2010.01.010
Nakada, S., Nagai, M., Kaneko, T., Suzuki, Y., Maeno, F., 2013. The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan. Earth, Planets and Space, 65, 475–488. doi:10.5047/eps.2013.03.016
Nakao, S. Morita, Y., Yakwara, H., Oikawa, J., Ueda, H., Takahashi, H., Ohta, T., Matsushima, T., Iguchi, M., 2013. Volume change of the magma reservoir relating to the 2011 Kirishima Shinmoe-dake eruption- Charging, discharging and recharging process inferred from GPS measurement. Earth, Planets, and Space, 65, 505-515. doi:10.5047/eps.2013.05.017
Natsume, Y., Ichihara, M., Takeo, M., 2018. A non-linear time-series analysis of the harmonic tremor observed at Shinmoedake volcano, Japan. Geophys. J. Int., 216(3), 1768-1784. doi: 10.1093/gji/ggy522
Obermann, A., Planes, T., Larose, E. & Campillo, M., 2013. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res. Solid Earth, 118, 6285-6294. doi:10.1002/2013JB010399, 2013
Riedl, M., Muller, A. & Wessel, N., 2013. Practical considerations of permutation entropy: A tutorial review. Eur. Phys. J. Special Topics , 222, 249-262. doi: 10.1140/epjst/e2013- 01862-7
Shapiro, N. M., M. H. Ritzwoller, and G. D. Bensen, 2006. Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophys. Res. Lett., 33, L18310, doi:10.1029/2006GL027010
Suzuki, Y., Yasuda, A., Hokanishi, N., Kaneko, T., Nakada, S., Fujii, T., 2013. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan-Constraints from melt inclusions and phase equilibria experiments. J. Volcanol. Geoterm. Res, 257, 184–204. doi: 10.1016/j.jvolgeores.2013.03.017
Wilkinson, M., 1997. Nonlinear dynamics, chaos-theory, and the "sciences of complexity": Their relevance to the study of the interaction between host and microflora. in PJ Heidt, Rusch & D VanderWaaij (eds), New Antimicrobial Strategies. Old Herborn University Seminar Monograph, Vol. 10, Inst Microecology & Biochem, Herborn-Dill, 111- 130, 10th Old-Herborn-University Seminar on New Antimicrobial Strategies, Germany.
Yang, Y. & Ritzwoller, M. H., 2008. Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst., 9(Q02008).
doi:10.1029/2007GC001814