跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾千祐
Chian-you Tzeng
論文名稱: 應用衛星觀測資料估算之熱能及渦度參數建立西北太平洋熱帶氣旋生成之指標
指導教授: 劉振榮
Gin-rong Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱帶氣旋熱力能量相對渦度
外文關鍵詞: Relative vorticity, Heat energy, Tropical cyclone
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   熱帶氣旋為台灣地區夏秋兩季主要的降水來源,但也常造成台灣地區的重大災情,若能提前預測熱帶氣旋的生成,及早進行防災準備,則可減輕災情。前人研究曾應用衛星資料估算熱帶氣旋發展前期總和熱力值和渦度值之時序變化,期能建立熱帶氣旋生成之指標,但其研究中以固定的範圍計算系統之熱力及渦度值,並未考慮熱帶氣旋系統雲系之變化所造成的誤差,因此本研究將建立熱帶氣旋系統雲系大小之判定程序,配合SSM/I及QuikSCAT衛星微波觀測資料所計算之熱力值與渦度值,以改進前人研究並獲得西北太平洋地區熱帶氣旋生成之熱力與渦度閾值。
      本研究選取2000年至2007年間5月至11月於西北太平洋形成之熱帶氣旋個案共106個,以其中2/3個案建立生成閾值,1/3個案進行相關驗証。驗証結果顯示,若未考慮系統大小變化(即固定範圍),35個驗証個案中有31個個案約可較JTWC提前兩天預測可能發展為熱帶氣旋的系統,可預報度為88.6%;若考慮系統雲系大小變化,則可預報度提昇為91.4%,顯示考慮系統大小可改善預報之成功率。而在2008年及2009年的24個獨立個案驗証方面,則有18個個案可成功提前預測,獲得相當不錯的結果,顯示在考量系統雲系範圍變化的情形,可有效改善熱帶氣旋生成預報之成功率。


      During summer and autumn seasons, tropical cyclone has been the main source of precipitation in Taiwan, but it also leads to serious disasters. If we could predict the formation of tropical cyclones, that will be helpful to the disaster mitigations. There were some researches employed satellite data to estimate the total heat energy and relative vorticity during typhoon formation period, and tried to find possible signals or thresholds as whether typhoons will occur or not. However, they did not consider the possible bias induced by using a fixed computing coverage. Therefore, this study will use a dynamic computing coverage by considering the cluster size variation of the tropical cyclone system, and employ SSM/I and QuikSCAT satellite data to estimate the total heat energy and relative vorticity, respectively, in finding better thresholds for these two physical values as whether typhoons will occur or not in the Northwest Pacific.
      This study selects 106 tropical cyclone cases during May to November, 2000-2007 in the Northwest Pacific, two-thirds of these cases are used to establish the formation thresholds, one-thirds of these cases, which total to 35 cases, are regarded as dependant cases for verification. The result shows that if we used a fixed tropical cyclone system size, there were 31 cases can be announced almost two days earlier before the official JTWC warnings were issued, and the prediction accuracy reaches 88.6%. If we considered the cluster size variation of these tropical cyclone systems, the prediction accuracy could be raised to 91.4%. It reveals that the dynamic tropical cyclone system size could improve the prediction accuracy. Furthermore, the verification result of 24 independent cases during 2008-2009 shows that 18 cases could be predicted before JTWC. It could improve tropical cyclone prediction accuracy by considering the cluster size variation of tropical cyclone systems.

    摘要                   i Abstract                 ii 致謝                   iii 目錄                   iv 表目錄                  vi 圖目錄                  vii 第一章 緒論               1  1.1 前言                1  1.2 文獻回顧              3  1.3 研究目的              5 第二章 衛星儀器介紹與資料收集      7  2.1 SSM/I                7  2.2 QuikSCAT              8  2.3 紅外線衛星影像           9  2.4 JTWC最佳路徑資料          11 第三章 研究方法             12  3.1 個案篩選              12  3.2 資料來源與處理           13  3.3 海氣參數反演            15   3.3.1 可感熱通量與潛熱通量      15   3.3.2 潛熱釋放量           17   3.3.3 總和熱力值           19  3.4 相對渦度值             19  3.5 氣旋系統大小            20 第四章 結果分析與討論          22  4.1 熱力與渦度閾值驗證         22  4.2 2008、2009年個案驗証        33 第五章 結論與未來展望          38 參考文獻                  41 參考網站                  46

    劉崇治與劉振榮,2000:應用衛星資料在梅雨季海上中尺度對流系統生成前兆之初步探討。大氣科學,第二十八期,第四號,317-341頁。
    劉嘉騏,2006:應用SSM/I衛星資料分析颱風形成之激發機制,國立中央大學大氣物理研究所碩士論文,92頁,台灣中壢。
    林欣怡,2007:應用衛星資料反演之海氣能量參數分析年際大氣環境差異對颱風生成條件之影響,國立中央大學大氣物理研究所碩士論文,108頁,台灣中壢。
    賴勇瑜,2008:應用衛星資料反演之熱力及動力參數分析南海地區熱帶低壓之生成機制,國立中央大學大氣物理研究所碩士論文,96頁,台灣中壢。
    Alliss, R. J., S. Raman, and S. W. Chang, 1992: Special Sensor Micro-wave/Imager (SSM/I) observations of Hurricane Hugo (1989). Mon. Wea. Rev., 120, 2723-2737.
    Black, P. G., and L. K. Shay, 1998: Observations of tropical cyclone intensity change due to air-sea interaction processes. Preprint, Symp. on Tropical Cyclone Intensity Change, Phoenix, AZ, Amer. Meteor. Soc., 161-168.
    Cattani, E., F. Torricella, and V. Levizzani, 2007: Rain areas delineation combining MW and VIS-NIR-IR instruments onboard TRMM. In: Proceedings 3rd IPWG Workshop, 23–27 October 2006, Melbourne, Australia. See also http://www.isac.cnr.it/~ipwg/.
    Davis, C. A.,and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 1859-1881.
    Ferraro, R. R.,and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurement. J. Atmos. Oceanic Technol., 12, 755-770.
    Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res., 94, 14547-14555.
    Goodberlet, M. A., C. T. Swift, 1992: Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans. Geosci. Remote Sensing, 30, 1076-1077.
    Gray, W. M., 1968: Global view of the origin of the tropical disturbances and storm. Mon. Wea. Rev., 96, 669-700.
    Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave/Imager (SSM/I). J. Geophy. Res., 96, 7423-7435.
    Hilburn, K. A., and F. J. Wentz, 2008: Mitigating the impact of RADCAL beacon contamination on F15 SSM/I ocean retrievals. Geophys. Res. Lett., 35, L18806, doi: 10.1029/2008GL034914.
    Katsaros, K. B., E. B. Forde, P. Chang and W. T. Liu, 2001: QuikSCAT’s SeaWinds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28, 1043-1046.
    Lee, C.-S., Y.-L. Lin, and K. K. W. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the Mei-yu front. Mon. Wea. Rev., 134, 2670-2687.
    Lin, I-I, C.-C. Wu, K. A. Emanuel, I-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635-2649.
    Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2001: A contrast and comparison of near-sea surface air temperature/humidity from GMS and SSM/I data with an improved algorithm. IEEE Trans. Geosci. Remote Sens, 39, 2148-2157.
    Liu, G.-R., C.-C. Liu and T.-H. Kuo, 2002: A satellite-derived Objective Potential Index for MCS development during the Mei-yu period. Journal of the Meteorological Society of Japan, 80, 503-517.
    Lowag, A., M. L. Black, M. D. Eastin, 2008: Structural and intensity changes of Hurricane Bret (1999). Part I: Environmental influences. Mon. Wea. Rev., 136, 4320-4333.
    McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical cyclones, WMO Tech Doc. 693, World Meteorological Organization, 63-105.
    Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506-521.
    Rodgers, E. B., and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in Western North Pacific tropical cyclones. J. Appl. Meteor., 34, 2587-2599.
    Rodgers, E. B.,W. Olson, J. Halverson, J. Simpson, and H. Pierce, 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 1983-2006.
    Schumacher, A. B., M. DeMaria, and J. A. Knaff, 2009: Objective estimation of the 24-h probability of tropical cyclone formation. Wea. Forecasting, 24, 456-471.
    Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effect of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
    Sharp, B. J., M. A. Bourassa, and J. J. O’Brien, 2002: Early detection of tropical cyclones using seawinds-derived vorticity. Bull. Amer. Meteor Soc., 83, 879-889.
    Yueh, S. H., B. W. Stiles, and W. T. Liu, 2003: QuikSCAT wind retrievals for tropical cyclones. IEEE Trans. Geosci. Remote Sens., 41, 2616-2628.

    QR CODE
    :::