跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪世軒
Shih-Hsuan, Hung
論文名稱: 由熱對火電腦模擬探討多層石墨烯在碳化矽基板上的成長
Epitaxial growth of multilayer graphene on 15R-SiC by simulated annealing technique
指導教授: 賴山強
San-Kiong, Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 42
中文關鍵詞: 碳化矽石墨烯
外文關鍵詞: silicon-carbide, graphene
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們可以藉由Erhart-Albe 版本的Tersoff 作用勢[41] 加上模擬退火方式在碳化矽基板上以磊晶生成石墨稀。在這篇文章裡面,我們成功的生成三層石墨烯並且用數值方式檢查了結合能,平均鍵長,石墨烯與基底的距離,多層石墨烯之間距離,平滑程度以及石墨烯生成面積(覆蓋)百分比。對於一層石墨烯,生成溫度在15R-SiC和6H-SiC 兩種不同結構中是一樣的,都是1200 K。相較於兩層石烯,15R-SiC生成溫度是1000 K,溫度略低於6H-SiC 生成兩層石墨烯之溫度。會產生這種結果是由於結構上的差異,也就是碳化矽基板的表層在能量最佳化後對應到不同結構的雙層碳原子(C-rich bilayer)所造成的結果。我們使用兩種不同的退火流程來比較三層石墨烯,透過結果分析因而採用了這篇文章所描述的方式。我們也有比對相關的實驗數值,像是石墨烯與基底的距離以及多層石墨烯之間的間距。


    The epitaxial graphene is grown for the first time on 15R-SiC(0001) substrate by
    employing a critically evaluated empirical potential, namely, the Tersoff-type Erhart-
    Albe potential [41] in the simulated annealing method. The factors that affect the
    growth process were studied. Three layers of graphene were successfully grown and
    they were examined by the calculated binding energy per atom, average bond-length,
    inter-layer and graphene-substrate separation distances, roughness parameter and
    graphene area coverage. We find that the threshold temperature at which one-layer graphene emerges is 1200 K which is the same as using 6H-SiC substrate. For the emergence of two-layer graphene, the 15R-SiC substrate yields 1000 K, which is lower than that from 6H-SiC substrate. The reasons for the disparity in threshod temperature grown on 6H- and 15R-SiC substrates are investigated and interpreted in terms of their geometrical differences. For the growth of three-layer graphene, we compared two annealing processes and discussed the difficulties in applying the same simulated method. A thorough analysis leads us to the present means of grow three-layer graphene. Also, we compared with related experiments for the various distance of separation parameters between the overlaid layers of graphene and substrate surface.

    I. INTRODUCTION.................................................................................................... 1 II. BACKGROUND AND THEORY ....................................................... 3 A. Structure of sic Polytypes ....................................................... 3 B. Empirical potential ....................................................... 8 III. SIMULATION PROCEDURE ...................................................... 12 A. Preparation of the sic Substrate ...................................................... 12 B. Preparation of carbon-rich layers ...................................................... 16 a. One-layer graphene ...................................................... 16 b. Two-layer graphene ...................................................... 18 c. Three-layer graphene ...................................................... 19 IV. NUMERICAL RESULTS AND DISCUSSION ...................................................... 23 A. One-layer graphene ...................................................... 23 B. Two- and three-Layer Graphene ...................................................... 28 C. Comparison of C-rich bilayers overlaid on 6H-SiC and 15R-SiC substrates ...................................................... 36 V. CONCLUSIONS ...................................................... 39 VI. REFERENCES .......................................................40

    [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
    [2] Y. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature 438, 201 (2005).
    [3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).
    [4] C.L. Kane, Nature 438, 168 (2005).
    [5] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, PNAS 102, 10451 (2005).
    [6] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8, 203 (2009).
    [7] S.V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
    [8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau Nano Lett. 8, 902 (2008).
    [9] S. Ghosh, D.L. Nika, E.P. Pokatilov1 and A.A. Balandin, New J. Phys. 11, 095012 (2009).
    [10] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).
    [11] M.M. Shokrieh and R. Rafiee, Mat. Design 31, 790 (2010).
    [12] C. Li, T.A. Chou, Int. J. Solid Struct. 40, 2487 (2003).
    [13] G.V. Lier, C.V. Alsenoy, V.V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
    [14] K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, Phys. Rev. B 64, 235406 (2001).
    [15] J. R. Xiao, B.A. Gama, and Jr. J.W. Gillespie, Int. J. Solid Struct. 42, 3075 (2005).
    [16] C.D. Reddy, S. Rajendran, and K.M. Liew, Int. J. Nanosci. 4, 631 (2005).
    [17] Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang, Nature 459, 820 (2009).
    [18] A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).
    [19] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano. Lett. 8, 3498 (2008).
    [20] S.M. Paek, E. Yoo, and I. Honma, Nano Lett. 9, 72 (2009).
    [21] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu, Acs Nano 3, 907 (2009).
    [22] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone, Nature Nanotech. 4, 861 (2009).
    [23] Z. Lee, K.J. Jeon, A. Dato, R. Erni, T.J. Richardson, M. Frenklach, and V. Radmilovic, Nano Lett. 9, 3365 (2009).
    [24] F.N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
    [25] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
    [26] A. J. Van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).
    [27] I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
    [28] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
    [29] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007).
    [30] N. Jakse, R. Arifin and S.K. Lai, Conden. Matter Phys. 14, 43802 (2011).
    [31] T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, S.K. Lai, J. Chem. Phys. 139, 204702 (2013).
    [32] C. Tang, L. Meng, H. Xiao, and J. Zhong, J. Appl. Phys. 103, 063505 (2008).
    [33] C. Tang, L. Meng, L. Sun, K. Zhang, and J. Zhong, J. Appl. Phys. 104, 113536 (2008).
    [34] F. Varchon, P. Mallet, J.-Y. Veuillen, and L. Magaud, Phys. Rev. B 77, 235412 (2008).
    [35] C. Lampin, C. Priester, C. Krzeminski, and L. Magaud, J. Appl. Phys. 107, 103514 (2010).
    [36] Y. Hwang, E. K. Lee, H. Choi, K. H. Yun, M. Lee and Y. C. Chung, J. Appl. Phys. 111, 104324 (2012).
    [37] SiC Materials and Devices, Y. S. Park, vol 52, p. 2-11, (Academic Press, New York, 1998).
    [38] P. Pirouz and J. W. Yang, Ultramicroscopy 51, 189 (1993).
    [39] L. S. Ramsdell in SiC Materials and Devices, edited Y. S. Park, Chap. 2, p.5 (Academic Press, London, 1998).
    42
    [40] SiC Materials and Devices, M. Shur, S. Rumyantsev and M. Levinshtein, Vol. 1, p.3, (World Scientific, Singapore, 2006).
    [41] P. Erhart and K. Albe, Phys. Rev. B 71, 035211 (2005).
    [42] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
    [43] J. Tersoff, Phys. Rev. B 38, 9902 (1988).
    [44] J. Tersoff, Phys. Rev. B 39, 5566 (1989).
    [45] LAMMPS code, http://lammps.sandia.gov.
    [46] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stepniewski, and J. M. Baranowski, J. Appl. Phys. 105, 023503 (2009).
    [47] A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).
    [48] J. Hass, W. A. de Heer and E. H. Conrad, J. Phys.: Condens. Matter 20 (2008) 323202.
    [49] S. W. Poon, W. Chen, A. T. S. Wee, and E. S. Tok, Phys. Chem. Chem. Phys. 12, 13522 (2010).

    QR CODE
    :::