| 研究生: |
蔡昇峰 Sheng-Feng Tsai |
|---|---|
| 論文名稱: |
利用反射式高能電子繞射儀分析電沉積在鉑(111)電極上的鈷/鎳薄膜晶體結構 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 高能電子繞射儀 、掃描穿隧式電子顯微鏡 、金屬薄膜 、鈷 、鎳 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以電化學方法沉積鈷/鎳金屬在鉑(111)電極上後,再將鉑(111)電極轉移進行RHEED繞射實驗,對照本實驗室先前in-situ STM圖像的研究結果,綜合討論出鈷/鎳薄膜的薄膜成長方式以及薄膜的晶體結構。在低覆蓋度1~2層鈷膜的情況時,鈷原子會以(111)面的排列方式吸附在鉑(111)面上,而且鈷(111)面中的原子成長方向為[-110]方向角,這與載體鉑(111)面的[-110]方向角相同,而電沉積上鈷原子傾向以自身的晶體結構(FCC,aCo=3.544Å)排列在鉑(111)電極之上,因外,我們還可以從RHEED圖中觀察到氧化鈷,而氧化鈷中鈷原子的間距為3Å,這與過去文獻氧化鈷單晶的鈷原子距離(3.01 Å)相符合,而氧化鈷中的鈷原子[-110]原子成長方向與載體鉑(111)電極相同;隨著鈷膜覆蓋度的增加,2~3層的鈷膜即可以在鉑(111)電極表面上觀察到twin結構的鈷金屬,而高覆蓋度鈷膜的三維晶格繞射點,可以在倒空間可排列出一個BCC的結構,而轉換成物理空間則為FCC晶體結構;這證明了鈷金屬沉積在鉑(111)電極表面時,鈷膜不傾向以自然界鈷金屬最穩定的HCP晶格結構排列,而是傾向以鈷(111)面FCC晶體結構成長在鉑(111)電極表面上。
Ultrathin films of cobalt were electrodeposited onto a well-ordered Pt(111) electrode and were transferred into ultrahigh vacuum chamber to be characterized by reflection high-energy electron diffraction (RHEED) techniques. The morphology of these Co thin films was also investigated by in-situ STM. At a sub-monolayer coverage both pseudomorphic cobalt and bulk-like Co(111) adlayers are formed on the bare Pt(111) surface. The former tends to align itself with its [110] axis in parallel to the Pt[110] direction. The first Co (111) layer grows with the in-plane lattice constant of bulk Co and the close-packed atomic rows are aligned with its [110] axis in the Pt[110] direction. In addition, two cobalt oxide domains rotated by 30o with respect to each other are identified with an estimated interatomic spacing of 3 Å, which agrees well with that (3.01 Å) of the crystalline (111) plane of CoO whose [110] directions are aligned in the Pt[110] direction. Co twin nuclei were detected at 2-3 ML Co layers on Pt(111) by RHEED for the first time, and the deduced bcc reciprocal lattice with the fcc-related twin spots of bulk Co strongly provides evidence that Co grows with a fcc (111) rather than a hcp (0001) orientation on Pt(111).
(1) C.Kittel, Introduction od Solid State Physics, 7thed, John Wiley & Sons inc.,New York (1997)
(2)魏淑宜 國立臺灣師範大學碩士論文 2007
(3) Bland, J. A. C.; Heinrich, B. Ultrathin Mag. StructureⅠ&Ⅱ, Springer-Verlag, Berlin 1994.
(4) Frear, D. R. Microelectron. 1999, 51, 22.
(5) Kittel, C. Introduction of Solid State Physics, 7th ed, John Wiley & Sons INC. New York 1997
(6)林宏鎰 國立台灣科技大學碩士論文 2006
(7) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc., New York 2001.
(8) Lide, D. R. Handbook of Chemistry and Phys., 72nd ed., Chemical Rubber Publishing Company, England, 257, 1991-1992.
(9) Poulopoulos, P.; Jensen, P. J.; Ney, A.; Lindner, J.; Baberschke, K. Phys. Rev. B 2002, 65, 064431.
(10) Höner, L. D.; Schneider, M. A.; Baranov, A. N.; Stepanyuk, V. S.; Bruno, P.; Kern, K. Phys. Rev. Lett. 2003, 90, 236801.
(11) Pedersen, M. Ø.; Bönicke, I. A.; Lœegsgaard, E.; Stensgaard, I.; Ruban, A.; Nørskov, J. K.; Besenbacher, F. Surf. Sci. 1997, 387, 86.
(12) Chang, H. W.; Yuan, F. T.; Yao, Y. D.; Cheng, W. Y.; Su, W. B.; Chang, C. S. J. Appl. Phys. 2006, 100, 084304.
(13) Mulazzi, M.; Stanescu, S.; Fujii, J.; Vobornik, I.; Boeglin, C.; Belkhou, R.; Rossi, G.; Barbier, A. Surf. Sci. 2006, 600, 3938.
(14)Allongue, P. Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V. Surf. Sci. 2004, 557, 41.
(15)Allongue, P.; Maroun, F.; Jurca, H. F.; Tournerie, N.; Savidand, G.; Cortès, R. Surf. Sci. 2009, 603, 1831.
(16)E.Lundgren; B.Stanka.; M. Schmid; P. Varga, physical review B . 2000, 62, 2843
(17)M.S. Zei, Surface Science, 2007, 601, 858-864
(18) H.L. Wu, M.S. Zei and S.L. Yau, J. Phys. Chem. 2010, C114, 200
(19)G. A. Prinz, Physical Review Letters . 1985, 54, 1051
(20)P. J. Dobson; C. R. Serna, BRIT. J. APPL. PHYS. (J. PHYS. D). 1969, 2, 1778
(21)M. J. Gibson; P. J. Dobson, J. Phys. F: Metal Phys. 1975, 5, 864
(22)顏伯諭 國立中央大學碩士論文 2011
(23)R Baudoing-Savois; P Dolle; Y Gauthier; M C Saint-Lager; M De Santis; V Jahns, J. Phys.:Condens. Matter, 1999, 11, 8355
(24) R. Kannan; S. Seehra; Mohindar, Physical Review B. 1987, 35, 6847
(25) E. Herrero, J. Li, Hector D. Abruna, Electrochemica Acta. 1999, 44, 2385
(26) P. Persson, G .A. Parks, G.E. Brown, Physica B. 1995, 208, 453
(27) P. Persson, G.A. Parks, G.E. Brown, Langmuir. 1995, 11, 3782
(28) J.S. Tsay, C.S. Shern, Surf. Sci. 1998, 396, 319
(29) G. Lehmpfuhl, Y. Uchida,M. S. Zei, and D. M. Kolb, “Electron diffraction and electron microscopy of electrode surfaces,” in Imaging of Surfaces and Interfaces; Frontiers of Electrochemistry, J. Lipkowski and P. N. Ross, Eds., vol. 5, p. 57, Wiley-VCH, Weinheim, Germany, 1999.
(30) M.S. Zei, G. Qiao, G. Lehmpfuhl and D.M. Kolb, Ber. Bunsenges. Phys. Chem. 1987, 91, 349
(31) G. Ertl, J. Kueppers, Low Energy Electron Diffraction and Surface Chemistry, VCH, Weinheim, 1985
(32) P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 1994, 319, 95
(33)Steven S. Zumdahl “Chemical principles” 5th Houghton Mifflin Eds, New York, 2003
(34)C. Kittel, “Introduction to Solid State Physics” , 7th 1953
(35) M.S. Zei, J. Nanotechnology. 2010 Article ID 487193, 1
(36) P. Grütter and U.T. Dürig Phys. Rev. B. 1994, 49, 2021
(37)M. Ohtake; M. Futamoto; F. Kirino; N. Fujita; N. Inaba, J. Appl. Phys. 2008, 103 07B522
(38) G.A. Prinz, Phys. Rev. Lett. 1985, 54, 1051
(39) C. H. Lee, H. He, F. Lamelas, W. Vavra, C. Uher, R. Clarke,Phys. Rev. Lett. 1989, 62, 653
(40)D.Y. Han, H. Y.Yang, C. B. Shen, X. Zhou, F. H. Wang, Powder technology. 2004, 147, 113-116
(41)H. Hosoi, K. Sueoka, K. Hayakawa, K. MuKasa, Applied Surf. Sci. 2000, 157, 218-221
(42)M. F. Luo, M. H. Ten, C. C. Wang, W.R. Lin, C.Y. Ho,B.W. Chang, C.T. Wang, Y.C. Lin, Y.J. Hsu, J. Phys. Chem. C, 2009, 113, 12419-12426