| 研究生: |
簡仁傑 Ren-Jay Jen |
|---|---|
| 論文名稱: |
二維至三維微波被動元件與射頻電路之設計與研製 |
| 指導教授: |
詹益仁
Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 三維電感 、必v放大器 |
| 外文關鍵詞: | power amplifier, 3-D inductor |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文主要的研究方向在於由傳統改良式二維(Modify-2D)結構的微波被動元件和電路發展到立體的3-D 架構。在薄膜製程方面,我們以低介電係數材料(Low-k)苯並環丁烯(BCB)在半導體基板上製作M-2D螺旋型電感;在矽基板方面,我們藉由蝕刻基板減少矽基板本身能量的損耗,藉以提昇被動元件的品質因子(Q factor) 。
在砷化稼基板上面,我們藉由量測自行製作的M-2D螺旋型電感,由所量測到的S 參數建立其電感的等效電路模型。運用此被動元件的等效電路模型加上NEC主動元件,我們設計並製作了一單級1.8GHz必v放大器,經由輸出必v,必v增益,三階交互調變失真截斷點的基本特性量測,分析電路特性並了解可應用領域及未來發展。
為完成電路積體化及未來發展,我們應用現有的資源和製程技術,把原本M-2D電感發展為立體化之3-D電感。利用此立體架構,我們發展了高Q (quantity factor) 電感和三維的低通濾波器,並由本校無塵室製作出來,發現模擬值和量測值有相當的吻合度,可作為未來三維電路發展的基礎。
參 考 文 獻
[1] Wen-Chang Chen, Cheng-Ting Yen, Li-Mei Chen, Lih-Ping Li,Guey-Shang Liou,“Processing and Characterization of Low Dielectric Constant Polymers,” (NSC 88-2214-E002-003)
[2] Paolo Arcioni,Rinaldo Castello,Giuseppe De Astis*,Enrico Sacchi and Francesco Svelto**,“Design and Characterization of Si Integrated Inductor,”IEEE Instrumentation and Measurement Technology Conference ,May ,1998
[3] 陳品銓,“改善矽質基板微波特性之關鍵技術,”碩士論文, 國立中央大學, 1999.
[4] 游銘傑,“氧化鋁基板薄膜元件及高頻電路之製作,”碩士論文,國立中央大學, 1999.
[5] “Advanced Design System 1.3 user’s manual,”Agilent Technologies innovating the HP Way, Nov. 1999.
[6] C. Patrick Yue, and S. Simon Wong,“Physical Modeling of Spiral Inductors on Silicon,”IEEE Trans. Electron Devices, vol.47, no. 3,Mar. 2000.
[7] P.pieters, K.Vaesen, G.Carchon, S.Brebels, W.Deraedt, E.Beyne,“Integration of Passive Components In Thin Film Multilayer MCM-D Technology for Wireless Front-End Application ,” Microwave Conference,2000 Asia Conference, pp221-224,2000.
[8] Behzad Razavi,“RF Microelectronics ,”Prentice-Hall, Inc., 1998
[9] 林睿揮, “積體化微波被動元件之研製與2.4GHz射頻電路之設計,”碩士論文,國立中央大學,2001.
[10] Kenji Kamogawa, Kenjiro Nishikawa, Ichihiko Toyoda, Tsuneo Tokumitsu, and Masayoshi Tanaka,“A Novel High-Q and Wide-Frequency-Range Inductor Using Si 3-D MMIC Technology,”IEEE Microwave and Guide Wave Lett., vol. 9, no. 1, Jan. 1999.
[11] Kenjiro Nishikawa, Suehiro Sugitani , Koh Inoue , Takao Ishii, Kenji Kamogawa, Belinda Piernas, and Katsuhiko Araki, “Low-Loss Passive Components on BCB-Based 3-D MMIC Technology,”Microwave Symposium Digest,2001 IEEE MTT-S International , Vol 3,pp1881-1884,May 2001.
[12] Ichihiko Toyoda, Kenjiro Nishikawa, Tsuneo Tokumitsu, Kenji Kamogawa, Chikara Yamaguchi, Makoto Hirano, Masayoshi Aikawa,“Three-Dimensional Masterslice MMIC on Si Substrate,”IEEE Radio Frequency Integrated Circuits Symposium 1997.
[13] Inder J. Bahl, “Improved Quality Factor Spiral Inductors on GaAs Substrates,” IEEE Microwave and Guide Wave Lett., vol. 9, no. 10,
[14] Jun-Bo Yoon , Chul-Hi Han , Euisik Yoon and Choong-Ki Kim,“High Performance Three-Dimensional On-Chip Inductors Fabricated By Novel micromachining Technology For RF MMIC,”Microwave Symposium Digest 1999,IEEE MTT-S international ,Vol 4,pp1523-1526 ,1999.
[15] Steve C. Cripps,“RF Power Amplifiers for Wireless Communications,”Artech House, Inc., 1999.
[16] David M. Pozar,“Microwave Engineering,”AddisonWesley, 1990.
[17] Guillermo Gonzalez,“Microwave Transistor Amplifier Analysis and Design,”Prentice-Hall, Inc., 1998.
[18] 王洲仁, “氧化鋁基板微波電路積體化之2.4Ghz接收端模組研製,”碩士論文,國立中央大學,2001.