跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃定為
Ting-Wei Huang
論文名稱: 釕-銅雙金屬電催化觸媒於廣酸鹼值電解液的高效析氫反應
Ruthenium-Copper Bimetallic Electrocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Values
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 77
中文關鍵詞: 析氫反應X光吸收光譜氫鍵能
外文關鍵詞: Cooper, Hydrogen bonding energy
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學水分解製氫是追求潔淨和持續能源的一種有效途徑。實際應用中,具高效能、經濟、簡便的析氫反應(hydrogen evolution reaction, HER)被高度關注。儘管鉑(Pt)在酸性介質中具有快速的動力學和最佳的氫鍵能(hydrogen bonding energy, HBE),但其在鹼性介質中的穩定性和活性不佳,阻礙了其在廣泛pH值範圍內之實際應用。
    在此,本研究提出非鉑基之釕銅觸媒(RuCu),透過增加結晶性和添加過渡金屬(銅)用以調整觸媒之HBE,使其可應用於酸鹼介質中並具有高活性。RuCu在0.5 M H2SO4和1.0 M KOH電解液中,在電流密度10 mA cm-2時過電位(η10)分別僅32和8 mV 且Tafel 斜率分別為36和37 mV dec-1。此外,RuCu在鹼性介質中進行5000圈加速老化測試後幾乎零損失。值得注意的是,RuCu在鹼性介質中甚至比Pt具有更快的反應動力學、更低的Tafel斜率和更高的轉換頻率(turnover frequency, TOF)。另一方面,釕-銅之間的交互作用對HER的效能影響也由一系列的物理分析及電化學量測證實,如於CO剝離測試、毒化測試和原位X光吸收光譜(in-situ X-ray absorption spectroscopy, in-situ XAS)分析RuCu的活性位點及其HER機制。本研究為製備高效能HER觸媒於酸鹼性介質的應用提供新的思維。


    電化學水分解製氫是追求潔淨和持續能源的一種有效途徑。實際應用中,具高效能、經濟、簡便的析氫反應(hydrogen evolution reaction, HER)被高度關注。儘管鉑(Pt)在酸性介質中具有快速的動力學和最佳的氫鍵能(hydrogen bonding energy, HBE),但其在鹼性介質中的穩定性和活性不佳,阻礙了其在廣泛pH值範圍內之實際應用。
    在此,本研究提出非鉑基之釕銅觸媒(RuCu),透過增加結晶性和添加過渡金屬(銅)用以調整觸媒之HBE,使其可應用於酸鹼介質中並具有高活性。RuCu在0.5 M H2SO4和1.0 M KOH電解液中,在電流密度10 mA cm-2時過電位(η10)分別僅32和8 mV 且Tafel 斜率分別為36和37 mV dec-1。此外,RuCu在鹼性介質中進行5000圈加速老化測試後幾乎零損失。值得注意的是,RuCu在鹼性介質中甚至比Pt具有更快的反應動力學、更低的Tafel斜率和更高的轉換頻率(turnover frequency, TOF)。另一方面,釕-銅之間的交互作用對HER的效能影響也由一系列的物理分析及電化學量測證實,如於CO剝離測試、毒化測試和原位X光吸收光譜(in-situ X-ray absorption spectroscopy, in-situ XAS)分析RuCu的活性位點及其HER機制。本研究為製備高效能HER觸媒於酸鹼性介質的應用提供新的思維。

    摘要 I Abstract II 致謝 III Table of Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Mechanism of HER 2 1.2 Ru-based electrocatalysts 4 1.3 Crystallinity dependence of Ru electrocatalysts 7 1.4 Motivation and approach 9 Chapter 2 Experimental Section 10 2.1 Preparation of catalysts 10 2.1.1 Reagents 10 2.1.2 Synthesis of RuCux/C catalysts 10 2.1.3 Synthesis of Ru/C catalysts 11 2.2 Characterization of catalysts 12 2.3 Electrochemical characterization 14 Chapter 3 Results and Discussion 17 3.1 The characterizations of catalysts 17 3.2 The electrochemical characterizations of catalysts 28 3.2.1 HER performance of catalysts 28 3.2.2 The active sites and HER mechanism of catalysts 44 Chapter 4 Conclusions 55 Reference 56

    [1] Bae, S. Y.; Mahmood, J.; Jeon, I. Y.; Baek, J. B., Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020, 5 (1), 43-56.
    [2] Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44 (15), 5148-5180.
    [3] Dang, D.; Zhang, L.; Zeng, X.; Tian, X.; Qu, C.; Nan, H.; Shu, T.; Hou, S.; Yang, L.; Zeng, J., In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure. J. Power Sources 2017, 355, 83-89.
    [4] Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B., Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11 (1), 1-10.
    [5] Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1 (1), 1-13.
    [6] Prabhu, P.; Jose, V.; Lee, J. M., Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2020, 2 (3), 526-553.
    [7] Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L., A general route to prepare low‐ruthenium‐content bimetallic electrocatalysts for pH‐universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 2020, 59 (4), 1718-1726.
    [8] Xu, Y.; Wang, C.; Huang, Y.; Fu, J., Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.
    [9] Wang, S.; Lu, A.; Zhong, C. J., Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 2021, 8 (1), 1-23.
    [10] Chen, Z.; Qing, H.; Zhou, K.; Sun, D.; Wu, R., Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Prog. Mater. Sci. 2020, 108, 100618.
    [11] Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13 (1), 1-20.
    [12] Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9 (11), 9973-10011.
    [13] Zhang, S.; Zhang, X.; Rui, Y.; Wang, R.; Li, X., Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021, 6 (4), 458-478.
    [14] Higgins, S., Regarding ruthenium. Nat. Chem. 2010, 2 (12), 1100-1100.
    [15] Karlberg, G., Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 2006, 74 (15), 153414.
    [16] Zhao, Y.; Wang, X.; Cheng, G.; Luo, W., Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 2020, 10 (20), 11751-11757.
    [17] Ye, S.; Luo, F.; Xu, T.; Zhang, P.; Shi, H.; Qin, S.; Wu, J.; He, C.; Ouyang, X.; Zhang, Q., Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.
    [18] Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z., High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138 (49), 16174-16181.
    [19] Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12 (5), 441-446.
    [20] Tu, K.; Tranca, D.; Rodríguez‐Hernández, F.; Jiang, K.; Huang, S.; Zheng, Q.; Chen, M. X.; Lu, C.; Su, Y.; Chen, Z., A Novel Heterostructure Based on RuMo Nanoalloys and N‐doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Adv. Mater. 2020, 32 (46), 2005433.
    [21] Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8 (1), 1-12.
    [22] Cao, D.; Wang, J.; Xu, H.; Cheng, D., Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16 (37), 2000924.
    [23] Rahaman, M.; Dutta, A.; Broekmann, P., Size‐Dependent Activity of Palladium Nanoparticles: Efficient Conversion of CO2 into Formate at Low Overpotentials. ChemSusChem 2017, 10 (8), 1733-1741.
    [24] Saji, P.; Ganguli, A. K.; Bhat, M. A.; Ingole, P. P., Probing the Crystal Structure, Composition‐Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures. ChemPhysChem 2016, 17 (8), 1195-1203.
    [25] Jiang, W. J.; Niu, S.; Tang, T.; Zhang, Q. H.; Liu, X. Z.; Zhang, Y.; Chen, Y. Y.; Li, J. H.; Gu, L.; Wan, L. J., Crystallinity‐Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3B for Efficient Water Oxidation. Angew. Chem. Int. Ed. 2017, 56 (23), 6572-6577.
    [26] Li, Y.; Zhang, L. A.; Qin, Y.; Chu, F.; Kong, Y.; Tao, Y.; Li, Y.; Bu, Y.; Ding, D.; Liu, M., Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 2018, 8 (7), 5714-5720.
    [27] Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 2012, 488 (7411), 294-303.
    [28] Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8 (1), 1-8.
    [29] Wang, P.; Jiang, K.; Wang, G.; Yao, J.; Huang, X., Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. 2016, 128 (41), 13051-13055.
    [30] Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S. A.; Shang, Y.; Yong, X.; Feng, T.; Wu, K.; Liu, Z., Carbon‐quantum‐dots‐loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30 (31), 1800676.
    [31] Mao, J.; He, C. T.; Pei, J.; Chen, W.; He, D.; He, Y.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D., Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9 (1), 1-8.
    [32] Lu, Q.; Hutchings, G. S.; Yu, W.; Zhou, Y.; Forest, R. V.; Tao, R.; Rosen, J.; Yonemoto, B. T.; Cao, Z.; Zheng, H., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015, 6 (1), 1-8.
    [33] Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W., Ruthenium‐based single‐atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9 (20), 1803913.
    [34] Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; De Groot, F. M.; Tan, Y., Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2019, 5 (1), 192-199.
    [35] Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L., Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10 (1), 1-13.
    [36] Schröder, F.; Esken, D.; Cokoja, M.; Van Den Berg, M. W.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B., Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130 (19), 6119-6130.
    [37] Arčon, I.; Benčan, A.; Kodre, A.; Kosec, M., X‐ray absorption spectroscopy analysis of Ru in La2RuO5. X-Ray Spectrom. 2007, 36 (5), 301-304.
    [38] Wong, J.; Lytle, F.; Messmer, R.; Maylotte, D., K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 1984, 30 (10), 5596.
    [39] Adeniyi, A. A.; Ajibade, P. A., Exploring the ruthenium-ligands bond and their relative properties at different computational methods. J. Chem. 2016, 2016.
    [40] Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W., Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13 (1), 1-11.
    [41] Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A., Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2016, 7 (8), 1466-1470.
    [42] Michell, D.; Rand, D.; Woods, R., A study of ruthenium electrodes by cyclic voltammetry and X-ray emission spectroscopy. J. Electroanal. Chem. Interf. Electrochem. 1978, 89 (1), 11-27.
    [43] Cao, D.; Wieckowski, A.; Inukai, J.; Alonso-Vante, N., Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J. Electrochem. Soc. 2006, 153 (5), A869.
    [44] Prakash, J.; Joachin, H., Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution. Electrochim. Acta 2000, 45 (14), 2289-2296.
    [45] Giri, S. D.; Sarkar, A., Electrochemical study of bulk and monolayer copper in alkaline solution. J. Electrochem. Soc. 2016, 163 (3), H252.
    [46] Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5 (1), 1-21.
    [47] Liu, X.; He, J.; Zhao, S.; Liu, Y.; Zhao, Z.; Luo, J.; Hu, G.; Sun, X.; Ding, Y., Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 2018, 9 (1), 1-10.
    [48] Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci 2014, 7 (8), 2624-2629.
    [49] Yao, Q.; Huang, B.; Zhang, N.; Sun, M.; Shao, Q.; Huang, X., Channel‐rich RuCu nanosheets for pH‐universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 2019, 131 (39), 14121-14126.
    [50] Lu, B.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10 (1), 1-11.
    [51] Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z., Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30 (39), 1800047.
    [52] Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30 (44), 1803676.
    [53] Liu, T.; Feng, B.; Wu, X.; Niu, Y.; Hu, W.; Li, C. M., Ru2P nanoparticle decorated P/N-doped carbon nanofibers on carbon cloth as a robust hierarchical electrocatalyst with platinum-comparable activity toward hydrogen evolution. ACS Appl. Energy Mater. 2018, 1 (7), 3143-3150.
    [54] Xu, Y.; Li, Y.; Yin, S.; Yu, H.; Xue, H.; Li, X.; Wang, H.; Wang, L., Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution. Nanotechnology 2018, 29 (22), 225403.
    [55] Gao, K.; Wang, Y.; Wang, Z.; Zhu, Z.; Wang, J.; Luo, Z.; Zhang, C.; Huang, X.; Zhang, H.; Huang, W., Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. Chem. Commun. 2018, 54 (36), 4613-4616.
    [56] Ding, R.; Chen, Q.; Luo, Q.; Zhou, L.; Wang, Y.; Zhang, Y.; Fan, G., Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22 (3), 835-842.
    [57] Liu, T.; Wang, S.; Zhang, Q.; Chen, L.; Hu, W.; Li, C. M., Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 2018, 54 (27), 3343-3346.
    [58] Cao, D.; Cheng, D., One-pot synthesis of copper–nickel sulfide nanowires for overall water splitting in alkaline media. Chem. Commun. 2019, 55 (56), 8154-8157.
    [59] McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B., Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3 (2), 166-169.
    [60] Kim, J.; Kim, H. J.; Ruqia, B.; Kim, M. J.; Jang, Y. J.; Jo, T. H.; Baik, H.; Oh, H. S.; Chung, H. S.; Baek, K., Crystal Phase Transition Creates a Highly Active and Stable RuCX Nanosurface for Hydrogen Evolution Reaction in Alkaline Media. Adv. Mater. 2021, 33 (48), 2105248.
    [61] Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S., Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138 (44), 14546-14549.
    [62] Cao, D.; Wang, J.; Xu, H.; Cheng, D., Construction of Dual‐Site Atomically Dispersed Electrocatalysts with Ru‐C5 Single Atoms and Ru‐O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 17 (31), 2101163.
    [63] Xing, L.; Gao, H.; Hai, G.; Tao, Z.; Zhao, J.; Jia, D.; Chen, X.; Han, M.; Hong, S.; Zheng, L., Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. 2020, 8 (6), 3203-3210.
    [64] Ma, J. H.; Feng, Y. Y.; Yu, J.; Zhao, D.; Wang, A. J.; Xu, B. Q., Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation. J. Catal. 2010, 275 (1), 34-44.
    [65] Velázquez-Palenzuela, A.; Brillas, E.; Arias, C.; Centellas, F.; Garrido, J. A.; Rodríguez, R. M.; Cabot, P. L., Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition. J. Power Sources 2013, 225, 163-171.
    [66] Zhao, T.; Wang, G.; Gong, M.; Xiao, D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H.; Li, Q., Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10 (24), 15207-15216.
    [67] Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z., The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 2018, 57 (26), 7568-7579.
    [68] Hong, Y.; Choi, C. H.; Choi, S. I., Catalytic Surface Specificity of Ni (OH)2‐Decorated Pt Nanocubes for the Hydrogen Evolution Reaction in an Alkaline Electrolyte. ChemSusChem 2019, 12 (17), 4021-4028.
    [69] Okamoto, Y.; Kubota, T.; Gotoh, H.; Ohto, Y.; Aritani, H.; Tanaka, T.; Yoshida, S., XAFS study of zirconia-supported copper catalysts for the NO–CO reaction: Deactivation, rejuvenation and stabilization of Cu species. J. Chem. Soc., Faraday Trans. 1998, 94 (24), 3743-3752.
    [70] Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9 (1), 1-9.
    [71] Li, G.; Jang, H.; Liu, S.; Li, Z.; Kim, M. G.; Qin, Q.; Liu, X.; Cho, J., The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 2022, 13 (1), 1-10.

    QR CODE
    :::