跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹家瑋
Chia-Wei Chan
論文名稱: 探討mir-100對於果蠅蛹期存活率的影響
mir-100 does not influence pupal survival rate in Drosophila melanogaster
指導教授: 葉淑丹
Shu-Dan Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 果蠅轉錄mir-100flea 跳躍因子
外文關鍵詞: Drosophila melanogaster, primary transcript, mir-100, flea transposon
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在果蠅(D. melanogaster)中,已知mir-100 會在果蠅發育時的前蛹期
    開始表現,先前研究發現在Canton S 品系中的mir-100 表現量較其他品系果
    蠅來的低,且蛹期存活率遠低於其他品系的果蠅,而且該品系基因組中mir-
    100 下游有一段flea 跳躍因子的存在,推測其可能影響了mir-100 的表現
    量。本論文研究延續前人研究結果,測試了mir-100 primary transcript 的轉
    錄,在RT-PCR 的實驗結果中發現帶有flea 跳躍因子的果蠅,其mir-100 所
    在的let-7 cluster 在primary transcript 的過程中會被分成兩個或以上的片段。
    接著利用遺傳背景控制與miRNA sponge 的方法檢測mir-100 對蛹期存活率
    的影響。在置換過染色體且具有flea 跳躍因子的果蠅,其蛹期存活率顯著地
    低於其他品系,但是利用抑制mir-100 表現量之品系的果蠅測試其蛹期存活
    率,結果發現其蛹期存活率並無明顯差異。此兩種方法所測得mir-100 對於
    果蠅蛹期存活率的影響不同,需更進一步的實驗來驗證。


    In Drosophila melanogaster, it is known that the expression of mir-100 starts at the
    pre-pupal stage. The expression level of mir-100 in a strain isolated from Canton S
    strain, named CS-UCI, is lower than that of other strains and the survival rate of
    this strain at the pupal stage is much lower than that of other strains, as found in
    the previous studies. The previous study revealed the presence of a flea transposon
    insertion in the downstream of mir-100, presumably affecting the expression level
    of mir-100. In this study, the primary transcript of mir-100 was examined by RTPCR.
    Based on the results of three RT-PCR experiments, the let-7 cluster,
    including mir-100, was transcribed into more than two primary transcripts in CSUCI
    flies. Next, the chromosome replacement of X and 3rd chromosomes in CSUCI
    and control strains was carried out to control the genetic background and the
    pupal survival rate was tested at 25°C . The results showed that flies carrying flea
    insertion exhibited lower survival rate at the pupal stage in comparison of other
    strains. However, the pupal survival rate did not change when the miR-100
    expression level was decreased by mir-100 sponge. Further experiments on
    measuring mir-100 expression level in genetic background controlled flies and
    mir-100 sponge flies are needed to resolve the contradictory results in pupal
    survival rate.

    目 錄 中文摘要 ………………………………………………………………… i 英文摘要 ………………………………………………………………… ii 誌謝 ………………………………………………………………… iii 目錄 ………………………………………………………………… iv 表目錄 ………………………………………………………………… vi 圖目錄 ………………………………………………………………… vii 一、 緒論…………………………………………………………… 1 1-1 MicroRNA 的簡介…………………………………………… 1 1-2 MicroRNA cluster 與其基因表現的調節…………………… 2 1-3 研究miRNA 功能的方法…………………………………… 5 1-4 研究動機……………………………………………………… 6 二、 研究方法……………………………………………………… 7 2-1 果蠅飼養與染色體置換流程………………………………… 7 2-2 總去氧核醣核酸(Total genomic DNA)萃取與let-7 cluster 區 段檢測………………………………………………………… 7 2-3 總核醣核酸(Total RNA)萃取與RT-PCR…………………… 9 2-4 果蠅蛹期期存活率試驗……………………………………… 10 2-5 統計分析方法………………………………………………… 11 三、 結果…………………………………………………………… 12 3-1 染色體置換後的檢測………………………………………… 12 3-2 flea 跳躍因子會隨著let-7 cluster 一起轉錄出來…………… 13 3-3 果蠅蛹期存活率之比較……………………………………… 14 四、 討論…………………………………………………………… 15 4-1 flea 可能影響果蠅之蛹期存活率及mir-100 的表現量……… 15 4-2 flea 隨著let-7 cluster 轉錄可能造成的影響………………… 15 4-3 檢討CS-UCI6 與mir-100 sponge 兩組蛹期存活率的實驗為 什麼結果不同………………………………………………… 16 v 五、 結論…………………………………………………………… 18 六、 參考文獻……………………………………………………… 19 vi 表目錄 表一 研究中使用的果蠅品系……………………………………… 23 表二 研究中使用的引子…………………………………………… 24 vii 圖目錄 圖一 microRNA 的生合成………………………………………… 25 圖二 果蠅染色體置換流程………………………………………… 26 圖三 let-7 cluster 區段與引子示意圖……………………………… 27 圖四 染色體置換後的檢測………………………………………… 28 圖五 flea 跳躍因子無法隨著let-7 Cluster 一起轉錄出…………… 29 圖六 flea 跳躍因子會隨著let-7 一起轉錄出……………………… 30 圖七 Pri-mir-100 在各品系中可以正常被轉錄出來……………… 31 圖八 培養箱25℃環境下的蛹期存活率差異……………………… 32 圖九 檢測染色體置換後的果蠅蛹期存活率差異………………… 33 圖十 利用microRNA sponge 檢測mir-100 對於果蠅蛹期存活率 的影響………………………………………………………… 34

    Altuvia, Y., P. Landgraf, G. Lithwick, N. Elefant, S. Pfeffer et al., 2005 Clustering
    and conservation patterns of human microRNAs. Nucleic Acids Res 33:
    2697-2706.
    Ambros, V., 2003 MicroRNA Pathways in Flies and Worms. Cell 113: 673-676.
    Aravin, A. A., M. Lagos-Quintana, A. Yalcin, M. Zavolan, D. Marks et al., 2003 The
    small RNA profile during Drosophila melanogaster development. Dev Cell
    5: 337-350.
    Axtell, M. J., J. O. Westholm and E. C. Lai, 2011 Vive la difference: biogenesis and
    evolution of microRNAs in plants and animals. Genome Biol 12: 221.
    Bartel, D. P., 2004 MicroRNAs: genomics, biogenesis, mechanism, and function.
    Cell 116: 281-297.
    Bartel, D. P., 2009 MicroRNAs: target recognition and regulatory functions. Cell
    136: 215-233.
    Baskerville, S., and D. P. Bartel, 2005 Microarray profiling of microRNAs reveals
    frequent coexpression with neighboring miRNAs and host genes. RNA 11:
    241-247.
    Boehm, M., and F. J. Slack, 2006 MicroRNA control of lifespan and metabolism.
    Cell Cycle 5: 837-840.
    Cesana, M., D. Cacchiarelli, I. Legnini, T. Santini, O. Sthandier et al., 2011 A long
    noncoding RNA controls muscle differentiation by functioning as a
    competing endogenous RNA. Cell 147: 358-369.
    Chen, Y. W., S. Song, R. Weng, P. Verma, J. M. Kugler et al., 2014 Systematic
    study of Drosophila microRNA functions using a collection of targeted
    knockout mutations. Dev Cell 31: 784-800.
    Chen, Y. W., R. Weng and S. M. Cohen, 2011 Protocols for use of homologous
    recombination gene targeting to produce microRNA mutants in Drosophila.
    Methods Mol Biol 732: 99-120.
    Denzler, R., V. Agarwal, J. Stefano, D. P. Bartel and M. Stoffel, 2014 Assessing the
    ceRNA hypothesis with quantitative measurements of miRNA and target
    abundance. Mol Cell 54: 766-776.
    Enright, A. J., B. John, U. Gaul, T. Tuschl, C. Sander et al., 2003 MicroRNA targets
    in Drosophila. Genome Biol 5: R1.
    Finkel, T., 2015 The metabolic regulation of aging. Nat Med 21: 1416-1423.
    Friedman, R. C., K. K. Farh, C. B. Burge and D. P. Bartel, 2009 Most mammalian
    mRNAs are conserved targets of microRNAs. Genome Res 19: 92-105.
    Gendron, C. M., and S. D. Pletcher, 2017 MicroRNAs mir-184 and let-7 alter
    Drosophila metabolism and longevity. Aging Cell 16: 1434-1438.
    Ghildiyal, M., and P. D. Zamore, 2009 Small silencing RNAs: an expanding
    universe. Nat Rev Genet 10: 94-108.
    20
    Griffiths-Jones, S., J. H. Hui, A. Marco and M. Ronshaugen, 2011 MicroRNA
    evolution by arm switching. EMBO Rep 12: 172-177.
    Grimson, A., M. Srivastava, B. Fahey, B. J. Woodcroft, H. R. Chiang et al., 2008
    Early origins and evolution of microRNAs and Piwi-interacting RNAs in
    animals. Nature 455: 1193-1197.
    Grishok, A., A. E. Pasquinelli, D. Conte, N. Li, S. Parrish et al., 2001 Genes and
    mechanisms related to RNA interference regulate expression of the small
    temporal RNAs that control C. elegans developmental timing. 106: 23-34.
    Hansen, T. B., T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen et al., 2013
    Natural RNA circles function as efficient microRNA sponges. Nature 495:
    384-388.
    Hertel, J., M. Lindemeyer, K. Missal, C. Fried, A. Tanzer et al., 2006 The expansion
    of the metazoan microRNA repertoire. BMC Genomics 7: 25.
    Hornstein, E., and N. Shomron, 2006 Canalization of development by microRNAs.
    Nat Genet 38 Suppl: S20-24.
    Inukai, S., and F. Slack, 2013 MicroRNAs and the genetic network in aging. J Mol
    Biol 425: 3601-3608.
    John, B., A. J. Enright, A. Aravin, T. Tuschl, C. Sander et al., 2004 Human
    MicroRNA targets. PLoS Biol 2: e363.
    Karreth, F. A., Y. Tay, D. Perna, U. Ala, S. M. Tan et al., 2011 In vivo identification
    of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse
    model of melanoma. Cell 147: 382-395.
    Kim, V. N., and J. W. Nam, 2006 Genomics of microRNA. Trends Genet 22: 165-
    173.
    Kloosterman, W. P., and R. H. Plasterk, 2006 The diverse functions of microRNAs
    in animal development and disease. Dev Cell 11: 441-450.
    Kondo, S., and R. Ueda, 2013 Highly improved gene targeting by germline-specific
    Cas9 expression in Drosophila. Genetics 195: 715-721.
    Kozomara, A., and S. Griffiths-Jones, 2011 miRBase: integrating microRNA
    annotation and deep-sequencing data. Nucleic Acids Res 39: D152-157.
    Kozomara, A., and S. Griffiths-Jones, 2013 miRBase: annotating high confidence
    microRNAs using deep sequencing data. Nucleic Acids Research 42: D68-
    D73.
    Lagos-Quintana, M., R. Rauhut, W. Lendeckel and T. Tuschl, 2001 Identification of
    novel genes coding for small expressed RNAs. Science 294: 853-858.
    Lau, N. C., L. P. Lim, E. G. Weinstein and D. P. Bartel, 2001 An abundant class of
    tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science
    294: 858-862.
    Lee, R. C., R. L. Feinbaum and V. J. c. Ambros, 1993 The C. elegans heterochronic
    gene lin-4 encodes small RNAs with antisense complementarity to lin-14. 75:
    843-854.
    Lee, Y., K. Jeon, J. T. Lee, S. Kim and V. N. Kim, 2002 MicroRNA maturation:
    stepwise processing and subcellular localization. EMBO J 21: 4663-4670.
    Lee, Y., M. Kim, J. Han, K. H. Yeom, S. Lee et al., 2004 MicroRNA genes are
    transcribed by RNA polymerase II. EMBO J 23: 4051-4060.
    Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel and C. B. Burge, 2003
    Prediction of mammalian microRNA targets. Cell 115: 787-798.
    21
    Marco, A., A. Kozomara, J. H. Hui, A. M. Emery, D. Rollinson et al., 2013a Sexbiased
    expression of microRNAs in Schistosoma mansoni. PLoS Negl Trop
    Dis 7: e2402.
    Marco, A., M. Ninova, M. Ronshaugen and S. Griffiths-Jones, 2013b Clusters of
    microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids
    Res 41: 7745-7752.
    Memczak, S., M. Jens, A. Elefsinioti, F. Torti, J. Krueger et al., 2013 Circular RNAs
    are a large class of animal RNAs with regulatory potency. Nature 495: 333-
    338.
    Nguyen, T. A., M. H. Jo, Y.-G. Choi, J. Park, S. C. Kwon et al., 2015 Functional
    anatomy of the human microprocessor. 161: 1374-1387.
    Pasquinelli, A. E., B. J. Reinhart, F. Slack, M. Q. Martindale, M. I. Kuroda et al.,
    2000 Conservation of the sequence and temporal expression of let-7
    heterochronic regulatory RNA. Nature 408: 86-89.
    Peng, D. X., M. Luo, L. W. Qiu, Y. L. He and X. F. Wang, 2012 Prognostic
    implications of microRNA-100 and its functional roles in human epithelial
    ovarian cancer. Oncol Rep 27: 1238-1244.
    Rajewsky, N., 2006 microRNA target predictions in animals. Nat Genet 38 Suppl:
    S8-13.
    Ryan, B., G. Joilin and J. M. Williams, 2015 Plasticity-related microRNA and their
    potential contribution to the maintenance of long-term potentiation. Front
    Mol Neurosci 8: 4.
    Ryazansky, S. S., V. A. Gvozdev and E. Berezikov, 2011 Evidence for posttranscriptional
    regulation of clustered microRNAs in Drosophila. BMC
    Genomics 12: 371.
    Saini, H. K., A. J. Enright and S. Griffiths-Jones, 2008 Annotation of mammalian
    primary microRNAs. BMC Genomics 9: 564.
    Saini, H. K., S. Griffiths-Jones and A. J. Enright, 2007 Genomic analysis of human
    microRNA transcripts. Proc Natl Acad Sci U S A 104: 17719-17724.
    Southall, T. D., D. A. Elliott and A. H. Brand, 2008 The GAL4 System: A Versatile
    Toolkit for Gene Expression in Drosophila. CSH Protoc 2008: pdb top49.
    Tay, Y., L. Kats, L. Salmena, D. Weiss, S. M. Tan et al., 2011 Coding-independent
    regulation of the tumor suppressor PTEN by competing endogenous mRNAs.
    Cell 147: 344-357.
    Tay, Y., J. Rinn and P. P. Pandolfi, 2014 The multilayered complexity of ceRNA
    crosstalk and competition. Nature 505: 344-352.
    Wang, Z., and F. Zhu, 2017 MicroRNA-100 is involved in shrimp immune response
    to white spot syndrome virus (WSSV) and Vibrio alginolyticus infection. Sci
    Rep 7: 42334.
    Wheeler, B. M., A. M. Heimberg, V. N. Moy, E. A. Sperling, T. W. Holstein et al.,
    2009 The deep evolution of metazoan microRNAs. Evol Dev 11: 50-68.
    Xiao, A., Z. Wang, Y. Hu, Y. Wu, Z. Luo et al., 2013 Chromosomal deletions and
    inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic
    Acids Res 41: e141.
    Yeh, S. D., M. von Grotthuss, K. A. Gandasetiawan, S. Jayasekera, X. Q. Xia et al.,
    2014 Functional divergence of the miRNA transcriptome at the onset of
    Drosophila metamorphosis. Mol Biol Evol 31: 2557-2572.
    22
    Yi, R., Y. Qin, I. G. Macara, B. R. J. G. Cullen and development, 2003 Exportin-5
    mediates the nuclear export of pre-microRNAs and short hairpin RNAs. 17:
    3011-3016.

    QR CODE
    :::