跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李天旭
Tien-Hsu Lee
論文名稱: 台灣地區主震及其最大規模餘震之研究
A study of the mainshocks and largest aftershocks in Taiwan area
指導教授: 陳玉英
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 分段指數分配韋伯分配萊利分配聯合分配相關分析
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 強主震的發生經常會破壞結構,造成財物損失或人員傷亡,之後發生的大規模餘震,可能進一弱化結構,加劇損失與傷亡,甚至危害救災的進行,因此強主震的風險評估及強主震發生後即時評估最大規模餘震的風險是重要的研究議題。本文首先根據台灣氣象局的完整地震目錄,藉分群分析選取1978-2022期間發生在台灣地區的規模5.0以上之主震,探討其規模分配,以及接連發生的主震間隔時間之分配。針對上述主震對應的最大規模餘震,探討最大餘震與主震的規模差距與時間差距之聯合分配。本文進一步分析不同的主震震源機制對於上述主震規模、主震間隔時間及最大餘震相關分配之影響。本文發現台灣主震的規模分配及最大餘震與其主震規模差距之分配與主震震源機制相關。


    The occurrence of a strong mainshock often results in the destruction of structures, leading to property damage and casualties. The subsequent large magnitude aftershocks may further weaken the structure, increase losses and casualties, and even endanger disaster relief. The evaluation of the risk of mainshocks and the forth coming largest aftershocks is hence an important research topic. The mainshocks with a magnitude of 5.0 or more that occurred in Taiwan during 1978-2022 are selected from the complete earthquake catalog of the Central Weather Bureau by using a cluster analysis. The distribution of the mainshocks magnitude and the distribution of the interoccurrence time of successive mainshocks are then discussed. Moreover, the largest aftershock corresponding to the mainshocks are selected. The joint distribution of the magnitude difference and time difference between the largest aftershock and the mainshock is then investigated. The effect of different mainshock focal mechanisms on the above distributions is further analysed. The study finds that the distribution of the mainshock magnitude and magnitude difference between the largest aftershock and mainshock in Taiwan is related to the focal mechanism of the mainshock.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 研究問題 1 第二章 文獻回顧 3 2.1 地震規模頻率 3 2.2 地震間隔時間 6 2.3 主震與最大規模餘震之時間差距與規模差距 7 2.4 統計檢定方法 9 第三章 研究方法 12 3.1 地震分群方法 12 3.2 主震相關分配 15 3.3 最大規模餘震相關分配 21 第四章 研究結果 23 4.1 主震規模分配 24 4.2 主震間隔時間分配 29 4.3 主震及其最大規模餘震之規模差距分配 34 4.4 主震發生時間及其最大規模餘震發生時間之時間差距分配 38 第五章 結論與討論 43 參考文獻 45 附錄A 47 附錄B 49

    Aki K (1965). Maximum likelihood estimate of b in the formula log N = a − bM and its
    confidence limits. Bulletin of the Earthquake Research Institute, 43, 237– 239.
    ´Alvarez-G´omez JA(2019). FMC—Earthquake focal mechanisms data management, cluster ´
    and classification. software X, 9, 299– 307.
    Best DJ, Gipps PG (1974). Algorithm AS 71: The upper tail probabilities of Kendall’s tau.
    Applied Statistics, 23, 98–100.
    Chen CH, Wang JP, Wu YM, chan CH (2012). A study of earthquake inter-occurrence times
    distribution models in Taiwan. Natural Hazards, 69, 1335-1350.
    Gutenberg R, Richter CF (1944). Frequency of earthquakes in California. Bulletin of the
    Seismological Society of America, 34, 185–188.
    Hasumi T, Chen CC, Akimoto T, Aizawa Y (2010). The Weibull-log Weibull transition of
    interoccurrence time for synthetic and natural earthquakes. Tectonophysics, 485, 9–16.
    Hoffman D, Karst OJ (1975). The Theory of the Rayleigh Distribution and Some of Its
    Applications. Journal of Ship Research, 19, 172-191.
    Kolmogorov A (1933). Sulla determinazione empirica di una lgge di distribuzione. Giornale dell’Istituto Italiano degli Attuari, 4, 83-91.
    Tahir M, Grasso JR, Amor´ese D (2012). The largest aftershock: How strong, how far away,
    how delayed? Geophysical Research Letters 39, L04301.
    Papazachos BC (1975). The importance of the parameters of seismic sequences to the problem of earthquake prediction. In: C. Karapiperis, D. Kotsakis and K. Makris (Editors),
    Volume in honour of Dimitris Aeginitis. Athens, 341-356.
    Richter CF (1958). Elementary seismology. Freeman, San Francisco, CA , 69.
    Tsapanos TM, Karakaisis GF, Hatzidimitriou PM, Scordilis EM (1987). On the probability
    of the time of occurrence of the largest aftershock and of the largest foreshock in a seismic
    sequence. Tectonophysics, 149, 177-180.
    Wiemer S, Wyss M (2000). Minimum magnitude of completeness in earthquake catalogs:
    Examples from Alaska, the western US and Japan. Bulletin of the Seismological Society
    of America, 90, 859–869.
    中央氣象局:地震測報中心20周年專刊(2008). 第四章:各觀測系統發展史。
    https://reurl.cc/y7RoRq
    鄧屬予(2002). 板塊間看台灣地震。科學發展,第350卷,第12-19頁。
    https://homepage.ntu.edu.tw/~tengls/geo-info_earthquake.htm

    QR CODE
    :::