跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宗信
Tsung-Hsin Lee
論文名稱: 積體化鈮酸鋰光電電磁場感測器研究
Investigation of Intergraded LiNbO3 Electrooptical Electromagnetic Field Sensor
指導教授: 張正陽
Jeng-yang Chang
李清庭
Ching-Ting Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 鈮酸鋰電光效應電磁場感測器天線
外文關鍵詞: lithium niobate, sensor, elctromagnetic field, electro-optic effect, antenna
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著無線通訊的蓬勃發展,所產生的電磁場的安全性受到科學界與一般民眾的關切,因此電磁場的量測技術及電磁防護便顯得重要。發展可精確量測的電磁波量測系統,進而研究其對於環境、生物的影響,將有助於在此方面之了解。
    本文採用鈮酸鋰晶體鈦擴散製程,製作可於線性區工作之無偏壓馬氏調制器,配合感應天線與調制電極之結合,完成光電電磁場感測器。另外,利用微型化感應天線與馬氏調制器積體化製程,完成光電電磁場感測器微型化目標。最後完成電磁場感測器系統模組,以實際的運用量測來驗證鈮酸鋰光電電磁場感測器優異的特性。藉由本文的研究成果,將可提昇國內在電磁場量測技術的發展及應用的能力與前景。


    In view of the progress of wireless communications, the security of electromagnetic field is concerned by the mass population. Therefore, the EM Field detective technology will be respected gradually. The accurate EM Field detective system will be contributive to the study in biology and environment ecology.
    In this thesis, we focus on the research and develop the applications of Mach-Zehnder modulator with micro antenna in electrooptical electromagnetic sensors. We study the basic configuration of the no bias Mach-Zehnder modulator, high sensitivity electrooptical electromagnetic sensors and the packaged module of fiber coupling with electrooptical electromagnetic detective system. According to the experimental results, This integrated structure of electromagnetic field sensor can be potentially employed in electromagnetic measurement.

    摘要………………………………………………….…………….……Ⅰ 目錄……………………………………………………………..........…Ⅲ 圖目………………………………………………………..……………Ⅳ 第一章 緒論……………………………………………………………..1 第二章 鈮酸鋰的電光效應……………………………………..………5 2-1 電光效應…………………………………………….……5 2-2 馬氏調制器……………………………………………….7 2-3 行波式電極……………………………………………….9 第三章 鈮酸鋰波導元件製作技術……………………………………11 3-1 鈮酸鋰馬氏調制器的製作……………………………...11 3-2 光纖與波導耦合技術……………………………...……19 第四章 光電電磁場感測器製作與量測………………………………23 4-1無偏壓之馬氏調制器之設計製作與特性量測及分析….23 4-2環形天線與馬氏調制器結合之光電電磁場感測器…….27 4-3積體化環形天線之光電電磁場感測器………………….34 4-4 積體化共平面波導天線之光電電磁場感測器…….…...38 4-5電容式天線與穿透式及反射式馬氏調制器積體化之光電電磁場感測器…………………………………………...43 第五章 結論……………………………………………………………54 參考文獻………………………………………………………………..56 本人發表之文章………………………………………………………..68

    1. N. Kuwabara, K. Tajima, R. Kobayashi and F. Amemiya, “Development and analysis of electric sensor using LiNbO3 optical modulator,” IEEE Trans. EMC, vol. 34, pp. 391-396 (1992)
    2. H. S. Berger, V. Kumara and K. Matloubi, “Consideration in the design of a broadband E-field sensing system,” in Proc. IEEE Symp. EMC, Seattle, pp. 383-389 (1988)
    3. J. C. Wyse and S. T. Sheehan, “A practical optical modulator and link for antennas,” IEEE J. Lightwave Technol., vol. 3, pp. 316-321 (1985)
    4. N. Kuwabara, K. Tajima and F. Amemiya, “Development of wide-band and highly sensitive electric field sensor using LiNbO3 optical modulator,” IEEE Int. Symp. on EMC, pp. 267-272 (1991)
    5. C. H. Bulmer, W. K. Burna and R. P. Moeller, “Linear interferometric waveguide modulator for electric magnetic-field detection,” Opt. Lett., vol. 5, pp. 176-178 (1980)
    6. M. K. Barnoski, B. U. Chen, T. R. Joseph, Y. Ya-Min Lee and O. G. Ramer, “Integrated optic spectrum analyzer,” IEEE Trans. Circuits and Systems, vol. CAS-26, pp. 1113-1124 (1979)
    7. G. D. Xu and C. S. Tsai, “Integrated acoustooptic modules for interferometric RF spectrum analyzers,” IEEE Photon. Technol. Lett., vol. 3, pp. 153-155 (1991)
    8. H. Suche, D. Hiller, I. Baumann and W. Sohler, “Integrated optical spectrum analyzer with internal gain,” IEEE Photon. Technol. Lett., vol. 7, pp. 505-507 (1995)
    9. R. Noe, A. Maucher and R. Ricken, “Spectral polarimeters based on integrated acousto-optical Ti:LiNbO3 TE-TM converters,” Fiber Integrated Opt.,vol. 18, pp. 273-286 (1999)
    10. C. S. Tsai, “Integrated acoustooptic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, pp. 529-554 (1992)
    11. C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys., vol. B35, pp. 113-118 (1984)
    12. H. Shimizu, R. Ishikawa and K. Kaede, “Integrated optical frequency modulator for fiber-optic gyroscope using frequency modulation method,” Electron. Lett., vol. 22, pp. 334-335 (1986)
    13. C. H. Bulmer and R. P. Moeller, “Fiber gyroscope with non-reciprocally operated, fiber-coupled LiNbO3 phase-shifter,” Opt. Lett., vol. 6, pp. 572-574 (1981)
    14. C. S. Tsai and Z. Y. Cheng, “Baseband integrated acoustooptic frequency shifter modulator module for fiber optic at 1.3μm,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 40, pp. 407-410 (1993)
    15. K. Nakamura and M. Ohsaki, “Trapped-energy vibratory gyroscopes using rotated Y-cut LiNbO3,” Jpn. J. Appl. Phys., vol. 37, pp. 2864-2867 (1998)
    16. F. T. S. Yu., S. Wu., A. Mayers and S. Rajan, “Color Holographic Storage in LiNbO3,” Opt. Comm., vol. 81, pp. 348-352 (1991)
    17. C. C. Sun, M. S. Tsaur and B. Wang, “Self-generating high-order diffraction under Bragg mismatching in LiNbO3,” Opt. Eng., vol. 38, pp. 1567-1572 (1999)
    18. Y. Shen, G. Q. Zhang and J. J. Xu, “Theoretical studies on two-step, two-color holographic recording with continuous-wave lights for LiNbO3 : Fe,” OSA Trends in Opt. and Photon., vol. 87, pp. 634-641 (2003)
    19. M. Lee and S. Takekawa, Y. Furukawa and K. Kitamur, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett., vol. 76, pp. 1653-1655 (2000)
    20. Y. Tomita, M. Hoshi and S. Sunarno, “Nonvolatile two-color holographic recording in Er-doped LiNbO3,” Jpn. J. Appl. Phys., vol. 40, pp. L1035-L1037 (2001)
    21. A. R. Tanguay Jr, ”Materials Requirements for Optical Processing and Computing Devices,” Opt. Eng., vol. 24, pp. 2-18 (1985)
    22. R. Chakraborty, J. C. Biswas and S. K. Lahiri, “Analytical model for computing propagation constant of Ti:LiNbO3 periodically segmented waveguides by effective-index-based matrix method,” Opt. Eng., vol. 42, pp. 2624-2629 (2003)
    23. C. S. Tsai, D. Y. Zang and P. Le, “Acoustooptic Bragg-diffraction in a LiNbO3 channel-planar composite waveguide with application to optical computing,” Appl. Phys. Lett., vol. 47, pp. 549-551 (1985)
    24. A. F. Benner, H. F. Jordan and V. P. Heuring, “Digital optical computing with optically switched directional-couplers,” Opt. Eng., vol. 30, pp. 1936-1941 (1991)
    25. V. P. Heuring, H. F. Jorfan and J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt., vol. 31, pp. 3213-3224 (1992)
    26. J. P. Lin and S. Thaniyavarn, “Four-channel Ti: LiNbO3 Wavelength Division Multiplexer for 1.3 μm Wavelength Operation,” Opt. Lett., vol. 16, pp. 473-475 (1991)
    27. H. Okayama and M. Kawahara, “Waveguide array grating wavelength demultiplexer on LiNbO3” in Tech. Dig Integer. Photon. Res’95, OSA. ISaB3 (1995)
    28. H. Okayama, M. Kawahara and T. Kamijok, “Reflective waveguide array demultiplexer in LiNbO3,” J. Lightwave Technol., vol. 14, pp. 985-990 (1996)
    29. J. P. Lin and S. Thaniavarn, “4-channel Ti-LiNbO3 Wavelength division multiplexer for 1.3μm wavelength operation,” Opt. Lett., vol. 16, pp. 473-475 (1991)
    30. M. Jinno, “Ultrafast time-division demultiplexer based on electrooptic on off gates,” J. Lightwave Technol., vol. 10, pp. 1458-1465 (1992)
    31. Z. Weissman, D. Nir, S. Ruschin and A. Hardy, “Asymmetric Y-junction wavelength demultiplexer based on segmented waveguides,” Appl. Phys. Lett., vol. 67, pp. 302-304 (1995)
    32. S. J. Chang, Y. B. Lin, J. F. Liu and W. S. Wang, “Improved electro-optic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Technol., vol. 17, pp. 843-847 (1999)
    32. R. C. Twu, C. C. Huang and W. S. Wang, “TE/TM mode splitter with heterogeneously coupled Ti-diffused and Ni-diffused waveguides on Z-cut lithium niobate,” Electron. Lett., vol. 36, pp. 220-221 (2000)
    33. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Kr?henb?hl, R. W. McElhanon and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol., vol. 17, 2551 (2000)
    34. H. Nagata, Y. Li, W. R. Bosenberg and G. L. Reiff, “DC drift of X-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett., vol. 16, pp. 2233-2235 (2004)
    35. J. M. Fuster, J. Marti and P. Candelas, “Modeling Mach-Zehnder LiNbO3 external modulators in microwave optical systems,” Microwave Opt. Technol. Lett., vol. 30, pp. 85-90 (2001)
    36. H. Suche, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, W. Sohler, S. Balsamo, I. Montrosset and K. K. Wong, “Efficient Q-switched Ti:Er:LiNbO3 waveguide laser,” Electron. Lett., vol. 34, pp. 1228-1230 (1998)
    37. E. L. Wooten, R. L. Stone, E. W. Miles and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol., vol. 14, pp. 2530-2536 (1996)
    38. P. Mollier, H. Porte and J. P. Goedgebuer, “Proton exchanged imbalanced Ti-LiNbO3 Mach-Zehnder modulator,” Appl. Phys. Lett., vol. 60, pp. 274-276 (1992)
    39. T. Fujiwara, A. Watanabe and H. Mori, “Measurement of uniformity of driving voltage in Ti-LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett., vol. 2, pp. 260-261 (1990)
    40. A. Yariv and P. Yeh, Optical waves in Crystals, Wiley, New York (1983)
    41. A. Yariv, Optical Electronics, 4th ed., Holt, Reinhart  Winston, New York (1991)
    42. S. L. Chin, Fundamentals of Laser Optoelectronics, World Scientific (1989)
    43. H. A. Haus, Waves and Fields in Optoelectronics, Central Book Company (1985)
    44. G. T. Harvey, “The photorefractive effect in directional coupler and Mach-Zehnder LiNbO3 optical modulators at a wavelength of 1.3μm,” J. Lightwave Technol., vol. 6, pp. 872-876 (1988)
    45. O. Mitomi, H. Miyazawa and K. Noguchi, “Waveguide-type LiNbO3 high-speed optical switches,” NTT Review, vol. 7, pp. 35-40 (1995)
    46. C. C. Chen, H. Forte, A. Carenco, J. P. Goedgebuer and V. Armbruster, “Phase correction by laser ablation of a polarization independent LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 9, pp. 1361-1363 (1997)
    47. F. L. Chao and W. S. Wang, “Simulation of the induced voltage on the electrodes of a Mach-Zehnder interferometer,” Microwave Opt. Technol. Lett., vol. 4, pp. 584-586 (1991)
    48. K. Kobota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide” IEEE J. Quantum. Electron., vol. 16, pp. 754-760, 1980.
    49. M. L. Riaziat, G. F. Virshup and J. N. Eckstein, “Optical wavelength shifting by traveling-wave electrooptic modulation,” IEEE Photon. Technol. Lett., vol. 5, pp. 1002-1005 (1993)
    50. M. Koshiba, Y. Tsuji and M Nishio, “Finite-element modeling of broad-band traveling-wave optical modulators,” IEEE Trans. Micro. Theory Technol., vol. 47, pp. 1627-1633 (1999)
    51. H. Miyamoto, H. Ohta, K. Tabuse, H. Iwaoka and Y. Miyagawa, “A broad-band traveling-wave Ti-LiNbO3 optical-phase modulator,” Jpn. J. Appl. Phys., vol. 30, pp. L383-L385 (1991)
    52. W. K. Burns, M. M. Howerton, R. P. Moeller, A. S. Greenblatt and R. W. McElhanon, “Broad-band reflection traveling-wave LiNbO3 modulator,” IEEE Photon. Technol. Lett., vol. 10, pp. 805-806 (1998)
    53. W. D. Wang, R. Tavlykaev and R. V. Ramaswamy, “Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with domain reversal,” IEEE Photon. Technol. Lett., vol. 9, pp. 610-612 (1997)
    54. R. V. Schmidt and I. P. Kaminow, “Metal-Diffused Optical Waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, pp. 458-460 (1974)
    55. M. Minaka, S. Saio, M. Shibata and S. Miyazawa, “Precise Determination of Refractive-index Changes in Ti-diffused LiNbO3 Optical Waveguides,” Appl. Phys. Lett., vol.49, pp. 4677-4682 (1978)
    56. Y. Avrahami and E. Zolotoyabko, “Diffusion and structural modification of Ti:LiNbO3, studied by high-resolution x-ray diffraction,” J. Appl. Phys., vol. 85, pp. 6447-6452 (1999)
    57. J. J. G. M. Vandertol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only Titanium diffusion,” J. Lightwave Technol., vol. 9, pp. 879-886 (1991)
    58. T. Nozawa and S. Miyazawa, “Ferroelectric microdomains in Ti-diffused LiNbO3 optical devices,” Jpn. J. Appl. Phys., vol. 35, pp. 107-113 (1996)
    59. M. L. Shah, “Optical Waveguides in LiNbO3 by Ion Exchange Technique,” Appl. Phys. Lett., vol. 26, pp. 652-653 (1975)
    60. J. L. Jacket, C. E. Rice and J. J. Veselka, “Proton Exchange for High-index Waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608 (1982)
    61. H. Hu, F. Lu, F. Chen, J. T. Liu, J. H. Zhang, K. M. Wang and B. R. Shi, “Optical and structural studies of proton-exchanged waveguides in z-cut LiTaO3,” Jpn. J. Appl. Phys., vol. 39, pp. L1227-L1229 (2000)
    62. W. Y. Hsu, C. S. Willand, V. Gopalan and M. C. Gupta, “Effect of proton-exchange on the nonlinear optical-properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 61, pp. 2263-2265 (1992)
    63. E. Y. B. Pun, K. K. Loi and P. S. Chung, “Proton-exchanged optial waveguides in Z-cut LiNbO3 using phosphoric-acid,” J. Lightwave Technol., vol. 11, pp. 277-284 (1993)
    64. G. M. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery and P. D. Townsend, “The Formation of Waveguide and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys., vol. 50, 7898-7901 (1979)
    65. P. J. Chandler and P. D. Townsend, “Waveguides and waveguide laser fabricated by ion-implantation,” Nucl. Instrum. Meth. B, vol. 80-1, pp. 1135-1142 (1993)
    66. L. Zhang, P. J. Chandler and P. D. Townsend, “Extra strange modes in ion-implanted Lithium-niobate waveguides,” J. Appl. Phys., vol. 70, pp. 1185-1189 (1991)
    67. J. Rams, J. Olivares, P. J. Chandler and P. D. Townsend, “Second harmonic generation capabilities of ion implanted LiNbO3 waveguides,” J. Appl. Phys. 84, pp. 5180-5183 (1998)
    68. D. M. Gill, D. Jacobson, C. A. White, C. D. W. Jones, Y. Shi, W. J. Minford and A. Harris, ”Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique,” J. Lightwave Technol., vol. 22, pp. 887-894 (2004)
    69. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi and L. Riviere, “Wavelength Dispersion of Ti Induced Refractive Index Change in Linbo3 as a Function of Diffusion Parameters,” J. Lightwave Technol., vol. 5, pp. 700-708 (1987)
    70. C. T. Lee, Ph. D. Thesis (University of Carnegie-mellon) (1982)
    71. M. Masuda and J. Koyama, “Effects of a buffer Layer on TM Modes in a Metal-clad Optical Waveguide Using Ti-diffused LiNbO3,” Appl. Phys. Lett., vol. 16, pp. 2994-3000 (1977)
    72. H. Nagagta, K. Kiuchi and T. Sugamata, “Refractive-index fluctuations in deformed Ti-LiNbO3 waveguides due to SiO2 overlayer deposition,” Appl. Phys. Lett., vol. 63, pp. 1176-1178 (1993)
    73. H. Nagata and K. Kiuchi, “Temperature-dependence of DC drift of Ti-LiNbO3 optical modulators with sputter-deposited SiO2 buffer layer,” J. Appl. Phys., vol. 73, pp. 4162-4164 (1993)
    74. C. T. Lee, C. T. Huang and J. Y. Chen, “Effect of SiOx buffer layer on propagation loss in LiNbO3 channel waveguides,” J. Appl. Phys., vol.84, pp. 1204-1209 (1998)
    75. R. C. Alferness, C. H. Joyner, L. L. Buhl, and S. K. Korotky, “High-speed Traveling-Wave Directional Coupler Switch/Modulator for λ= 1.32μm,” IEEE J. Quantum. Electron., vol. 19, pp. 1339-1341 (1983)
    76. A. Yariv and P. Yeh., “Optical Waves in Crystal,” New York : John Wiley and Sons (1983).
    77. BeamPROP Version 5.0, RSoft, Inc. (2001)
    78. T. Miyakawa, K. Nishikawa, and K. Nishida, “An optical waveguide type magnetic field probe with a loop antenna element,” Electronics and Communications in Japan Part 2, vol. 88, pp. 18-27 (2005)
    79. F. Zhang, F. Chen and K. Qiu, “An integrated electro-optic E-field sensor with segmented electrodes,” Microwave and Opt. Technol. Lett., vol. 40, pp. 302-305 (2004)
    80. T. Meier, C. Kostrzewa, K. Petermann and B. Sch?ppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol., vol. 12, pp. 1497-1503 (1994)
    81. T. Meier, C. Kostrzewa, B. Sch?ppert and K. Petermann, “Electro-Optical E-Field Senor with Optimized Electrode Structure,” Electron. Lett., vol. 28, pp. 1327-1329 (1992)
    82. D. K. Cheng, “Field and Wave Electromagnetics,” 2nd. Ed., Addison-Wesley (1989)
    83. O. Svelto, “Principles of Laser,” 3rd. ed., New York: Plenum (1989)

    QR CODE
    :::